Note on the Bayad Reciprocity Law in an Imaginary Quadratic Number Field II

by

Heima HAYASHI¹

(Received: 19 OCTOBER 2009, Accepted: 22 FEBRUARY 2010)

Abstract

This paper is a sequel to our previous paper of the same title [6]. Using the results in Bayad-Ayala [2], the original Bayad function is expressed with use of the Klein function, and all our results in [6] can be rewritten in a renewed version (Theorems 1-2 and 4-1). In particular, we are deeply concerned with the quantities $\xi_{\Omega}(\alpha)$ and $A_{\alpha}^{(\beta)}$ defined in [6] respectively with relation to the product formula of Bayad function and the law of quadratic reciprocity in an imaginary quadratic number field (Theorems 2-3 and 4-1). It is remarkable that our renewed formula of quadratic reciprocity law has the quite similar form to one of the formula of Hajir-Villegas [5], and this fact provides us another interesting problem (Theorems 4-2, 4-3 and 4-4).

1. Terminologies and reformulation of a result on the Bayad function.

Let C, R and Z be respectively the field of complex and real numbers and the ring of rational integers. By a C-lattice we mean a free Z-module of rank 2 which spans C over R. For C-lattice Ω with Z-basis { ω_1, ω_2 } such that $\text{Im}(\omega_1/\omega_2) > 0$,

$$a(\Omega) := \frac{1}{2i} \begin{vmatrix} \omega_1 & \omega_2 \\ \overline{\omega_1} & \overline{\omega_2} \end{vmatrix} = |\omega_2|^2 \operatorname{Im}\left(\frac{\omega_1}{\omega_2}\right)$$

is a real positive number, which means the area of fundamental parallelogram of Ω and depends only on Ω . Let E_{Ω} be a *R*-bilinear form defined by

$$E_{\Omega}(u,v) := \frac{1}{2 i a(\Omega)} (\overline{u}v - u\overline{v}) \quad \text{for} \quad (u,v) \in \mathbf{C} \times \mathbf{C}.$$

Then E_{Ω} is integral valued on $\Omega \times \Omega$ and $E_{\Omega}(\omega_1, \omega_2) = -1$ for any basis $\{\omega_1, \omega_2\}$ of Ω such that $\operatorname{Im}(\omega_1/\omega_2) > 0$.

Here we summarize briefly about the Klein function \mathcal{K}_{Ω} , the Jacobi form D_{Ω} and their fundamental properties, quoting mainly from Bayad-Ayala [2]. For the detail, one should refer also to Kubert [7] and Kubert-Lang [8]. The Klein function \mathcal{K}_{Ω} attached to a C-lattice Ω is defined by the infinite product

$$\mathcal{K}_{\Omega}(z) = z \, e^{-\frac{1}{2}z \, \eta(z,\Omega)} \prod_{\omega \in \Omega \setminus \{0\}} \left(1 - \frac{z}{\omega}\right) e^{\frac{z}{\omega} + \frac{1}{2} \left(\frac{z}{\omega}\right)^2}$$

¹Department of Mathematics, Faculty of Science.

for any $z \in C$, where $\eta(z, \Omega)$ means the Weierstrass-Legendre eta function attached to Ω . \mathcal{K}_{Ω} has the following fundamental properties:

(K1) For $\rho \in \Omega$

$$\mathcal{K}_{\Omega}(z+\rho) = \chi_{\Omega}(\rho) \, e(E_{\Omega}(\rho,z)/2) \, \mathcal{K}_{\Omega}(z),$$

where

$$\chi_{\Omega}(\rho) = \begin{cases} 1 & \text{if } \rho \in 2\Omega, \\ \\ -1 & \text{if } \rho \in \Omega \setminus 2\Omega, \end{cases}$$

and $e(x) = e^{2\pi i x}$ for $x \in \mathbf{R}$.

(K2) $\mathcal{K}_{\Omega}(z)$ is homogeneous of degree 1, that is

$$\mathcal{K}_{\lambda\Omega}(\lambda z) = \lambda \mathcal{K}_{\Omega}(z) \qquad ext{for} \quad \lambda \in \boldsymbol{C}^{\times} := \boldsymbol{C} \setminus \{0\}$$

In particular, $\mathcal{K}_{\Omega}(-z) = -\mathcal{K}_{\Omega}(z)$.

(K3) $\mathcal{K}_{\Omega}(z)$ admits principal part z when z tends to 0, that is

$$\lim_{z \to 0} \frac{\mathcal{K}_{\Omega}(z)}{z} = 1.$$

Let Ω and Λ be two C-lattices such that $\Omega \subset \Lambda$, and \mathcal{R} be any complete system of representatives of Λ/Ω . Then the following product formula holds:

(K4)
$$\mathcal{K}_{\Lambda}(z) = e \Big(E_{\Omega}(z \ , \ \sum_{\substack{x \in \mathcal{R} \\ x \notin \Omega}} x \)/2 \Big) \mathcal{K}_{\Omega}(z) \prod_{\substack{x \in \mathcal{R} \\ x \notin \Omega}} \frac{\mathcal{K}_{\Omega}(z+x)}{\mathcal{K}_{\Omega}(x)}.$$

The Jacobi form D_{Ω} associated with \mathcal{K}_{Ω} is defined by

(1.1)
$$D_{\Omega}(z;\varphi) = e \Big(E_{\Omega}(z,\varphi)/2 \Big) \frac{\mathcal{K}_{\Omega}(z+\varphi)}{\mathcal{K}_{\Omega}(z)\mathcal{K}_{\Omega}(\varphi)} \quad \text{for} \quad z,\varphi \in \mathbf{C} \setminus \Omega.$$

 $D_{\Omega}(z; \varphi)$ satisfies the following fundamental properties:

- (D1) $D_{\Omega}(z; \varphi + \rho) = D_{\Omega}(z; \varphi)$ for any $\rho \in \Omega$.
- (D2) $D_{\Omega}(z + \rho; \varphi) = e(E_{\Omega}(\rho, \varphi)) D_{\Omega}(z; \varphi)$ for any $\rho \in \Omega$.
- (D3) $D_{\Omega}(z; \varphi) = e(E_{\Omega}(z, \varphi))D_{\Omega}(\varphi; z).$

(D4) $D_{\Omega}(z; \varphi)$ is homogeneous of degree -1, that is

$$D_{\lambda\Omega}(\lambda z\,;\,\lambda\varphi) = \lambda^{-1} D_{\Omega}(z\,;\,\varphi) \qquad \text{for } \ \lambda \in \boldsymbol{C}^{\times}.$$

(D5) $D_{\Omega}(z \varphi)$ admits principal part $\frac{1}{z}$ when z tends to 0, that is

$$\lim_{z \to 0} z \cdot D_{\Omega}(z \, ; \, \varphi) = 1.$$

Let Ω , Λ and \mathcal{R} be the same as before. Then the main theorem in [2] asserts the following product formulas:

(D6) For any z and $\varphi \in \boldsymbol{C} \setminus \Lambda$,

$$D_{\Lambda}(z\,;\,\varphi) = \frac{\mathcal{K}_{\Omega}(\varphi)^{[\Lambda:\,\Omega]}}{\mathcal{K}_{\Lambda}(\varphi)} \prod_{x\in\mathcal{R}} D_{\Omega}(z+x\,;\,\varphi) e\big(-E_{\Omega}(x\,,\,\varphi)\,\big).$$

(D7) For any $z \in \boldsymbol{C} \setminus \Lambda$,

$$\prod_{x \in \mathcal{R}, x \notin \Omega} D_{\Omega}(z \, ; \, x)^{-1} = \frac{\mathcal{K}_{\Omega}(z)^{[\Lambda : \Omega]}}{\mathcal{K}_{\Lambda}(z)}$$

With relation to the Weierstrass \wp -function, the following formulas hold:

(D8) For any $z, \varphi \in \mathbf{C} \setminus \Omega$, $\wp_{\Omega}(z) - \wp_{\Omega}(\varphi) = D_{\Omega}(z; \varphi) D_{\Omega}(z; -\varphi)$. (D9) For any $z \in \mathbf{C} \setminus \Omega$, $\wp'_{\Omega}(z) = -2 \prod_{\varphi} D_{\Omega}(z; \varphi)$, where φ runs over the set of representatives of $\frac{1}{2}\Omega/\Omega$ such that $\varphi \notin \Omega$.

The Bayad function f_{Ω} attached to a **C**-lattice Ω with basis $\{\omega_1, \omega_2\}$ is originally defined by

$$f_{\Omega}(z) = C \; \frac{\wp_{\Omega}(z) - \wp_{\Omega}\left(\frac{\omega_1 + \omega_2}{2}\right)}{\wp_{\Omega}'(z)}$$

with the constant C such that

$$C^{2} = \frac{2\wp_{\Omega}''\left(\frac{\omega_{2}}{2}\right)}{\wp_{\Omega}\left(\frac{\omega_{2}}{2}\right) - \wp_{\Omega}\left(\frac{\omega_{1}+\omega_{2}}{2}\right)}$$

(see [1] and [6]). Of course this definition of f_{Ω} depends on the choice of the basis $\{\omega_1, \omega_2\}$ of Ω . By the formulas (D8) and (D9), $f_{\Omega}(z)$ can be reformed as follow:

$$\begin{split} f_{\Omega}(z) &= -\frac{C}{2} \frac{D_{\Omega}\left(z; \frac{\omega_{1} + \omega_{2}}{2}\right)}{D_{\Omega}\left(z; \frac{\omega_{1}}{2}\right) D_{\Omega}\left(z; \frac{\omega_{3}}{2}\right)} \\ &= -\frac{C}{2} \frac{\mathcal{K}_{\Omega}\left(\frac{\omega_{1}}{2}\right) \mathcal{K}_{\Omega}\left(\frac{\omega_{2}}{2}\right)}{\mathcal{K}_{\Omega}\left(\frac{\omega_{1} + \omega_{2}}{2}\right)} \times \frac{\mathcal{K}_{\Omega}\left(z + \frac{\omega_{1} + \omega_{2}}{2}\right) \mathcal{K}_{\Omega}(z)}{\mathcal{K}_{\Omega}\left(z + \frac{\omega_{1} + \omega_{2}}{2}\right) \mathcal{K}_{\Omega}\left(z + \frac{\omega_{2}}{2}\right)} \\ &:= C_{1} \frac{\mathcal{K}_{\Omega}\left(z + \frac{\omega_{1} + \omega_{2}}{2}\right) \mathcal{K}_{\Omega}(z + \frac{\omega_{2}}{2})}{\mathcal{K}_{\Omega}\left(z + \frac{\omega_{1}}{2}\right) \mathcal{K}_{\Omega}\left(z + \frac{\omega_{2}}{2}\right)}. \end{split}$$

A simple calculation (using (D8) and (D9)) shows that $C_1 = \pm e(\frac{1}{8}E_{\Omega}(\omega_2, \omega_1))$. Hence we may adopt

(1.2)
$$f_{\Omega}(z) = e\left(\frac{1}{8}E_{\Omega}(\omega_2, \omega_1)\right) \frac{\mathcal{K}_{\Omega}\left(z + \frac{\omega_1 + \omega_2}{2}\right)\mathcal{K}_{\Omega}(z)}{\mathcal{K}_{\Omega}\left(z + \frac{\omega_1}{2}\right)\mathcal{K}_{\Omega}\left(z + \frac{\omega_2}{2}\right)},$$

as the definition of Bayad function. Of course this definition also depends on the choice of basis $\{\omega_1, \omega_2\}$ of Ω . f_{Ω} is an Ω -elliptic function and its divisor on C/Ω is

$$(f_{\Omega}) = (\frac{\omega_1 + \omega_2}{2}) + (0) - (\frac{\omega_1}{2}) - (\frac{\omega_2}{2}).$$

The following lemma is immediate from the definition (1.1) and the formula (K1).

Lemma 1-1([6, Lemma 1-1]). Under the above notations, we have

(1)
$$f_{\Omega}(z) \cdot f_{\Omega}(z + \frac{\omega_1}{2}) = 1,$$
 (2) $f_{\Omega}(z) \cdot f_{\Omega}(z + \frac{\omega_2}{2}) = -1.$

Hereafter let k be an imaginary quadratic number field and \mathfrak{o}_k be the ring of integers in k. We mean by $J^*(2)$ the set { $\alpha \in \mathfrak{o}_k \mid (\alpha, 2\mathfrak{o}_k) = 1$ }. For a fixed \mathfrak{o}_k -ideal Ω and an element α in \mathfrak{o}_k , we define

$$\operatorname{Ker}(\alpha) = \operatorname{Ker}_{\Omega}(\alpha) := \{ x \in \boldsymbol{C}/\Omega \mid \alpha x = 0 \}.$$

We call the elements in $\operatorname{Ker}(\alpha)$ α -division points of \mathbb{C}/Ω . In particular, $x \in \operatorname{Ker}(\alpha)$ is called a primitive α -division point of \mathbb{C}/Ω if $\alpha_1 x \neq 0$ for any $\alpha_1 \in \mathfrak{o}_k$ such that $\alpha_1 \notin \alpha \mathfrak{o}_k$. Plainly, $\operatorname{Ker}(\alpha) = \alpha^{-1}\Omega/\Omega$ and this is a finite group of order $N\alpha$, where $N\alpha$ means the absolute norm of α . Moreover, if $x_{\alpha} \in \operatorname{Ker}(\alpha)$ is a fixed primitive α -division point, then the map

$$\mathfrak{o}_k \to \mathbf{C}/\Omega$$
 by $r \mapsto rx_{lpha}$

induces an isomorphism of \mathfrak{o}_k -module from $\mathfrak{o}_k/\alpha \mathfrak{o}_k$ onto $\operatorname{Ker}(\alpha)$, and $\operatorname{Ker}(\alpha)$ may be written as $\{ rx_{\alpha} \mid r \mod \alpha \mathfrak{o}_k, r \in \mathfrak{o}_k \}$. Sometimes, for convenience sake, we use the notation $\operatorname{Ker}(\alpha)$, identifying it with a complete set of representatives of $\alpha^{-1}\Omega/\Omega$.

Using the formula (D8), we can restate our product formula for f_{Ω} (Theorem 1-3 in [6]) as follows.

Theorem 1-2 (Revised product formula). For any α in $J^*(2)$,

$$f_{\Omega}(\alpha z) \frac{D_{\Omega}^{2}\left(\alpha z \, ; \, \alpha \frac{\omega_{1} + \omega_{2}}{2}\right)}{D_{\Omega}^{2}\left(\alpha z \, ; \, \frac{\omega_{1} + \omega_{2}}{2}\right)} = \xi_{\Omega}(\alpha) \prod_{x \in \operatorname{Ker}(\alpha)} f_{\Omega}(z + x),$$

where $\xi_{\Omega}(\alpha)$ is given by

$$\xi_{\Omega}(\alpha) = \alpha \prod_{\substack{x \in \operatorname{Ker}(\alpha) \\ x \neq 0}} \left(f_{\Omega}(x) \right)^{-1} = \alpha \prod_{\substack{x \in \operatorname{Ker}(\alpha) \\ x \neq 0}} f_{\Omega}(x + \frac{\omega_1}{2}).$$

Here we remark that if $\alpha \equiv 1 \pmod{2\mathfrak{o}_k}$, D_{Ω} -factor in Theorem 1-2 can be deleted and we have $\xi_{\Omega}^2(\alpha) = 1$ as in Bayad [1]. In the rest of this section, we consider the value $\xi_{\Omega}(\alpha)$ more precisely, reviewing our arguments in Sec. 1 of [6].

Now the multiplicative group $(\mathfrak{o}_k/2\mathfrak{o}_k)^{\times}$ has 3 possibilities:

(a) $(\mathfrak{o}_k/2\mathfrak{o}_k)^{\times} \cong \{1\}$, when 2 splits in k.

(b) $(\mathfrak{o}_k/2\mathfrak{o}_k)^{\times}$ is a cyclic group of order 2, when 2 ramifies in k.

(c) $(\mathfrak{o}_k/2\mathfrak{o}_k)^{\times}$ is a cyclic group of order 3, when 2 remains prime in k.

In case (a), since $\alpha \equiv 1 \pmod{2\mathfrak{o}_k}$ for any $\alpha \in J^*(2), \xi_{\Omega}^2(\alpha) = 1$ as in [1].

In case (b), by a suitable choice of basis $\{\omega_1, \omega_2\}$ of Ω , we may assume that $\omega_1/2$ and $\omega_2/2$ represent two distinct primitive 2-division points of Ω and $(\omega_1 + \omega_2)/2$ other non-zero 2-division point. Under this assumption, we showed that $\xi_{\Omega}^2(\alpha) = -1$ for any $\alpha \in J^*(2)$ such that $\alpha \not\equiv 1 \pmod{2\mathfrak{o}_k}$.

In case (c), we showed that for any $\alpha \in J^*(2)$ such that $\alpha \not\equiv 1 \pmod{2\mathfrak{o}_k}$

$$(\alpha^2 + \alpha + 1) \frac{\omega_1 + \omega_2}{2} \equiv 0 \pmod{\Omega}$$

and

$$\xi_{\Omega}^{2}(\alpha) = -\frac{\wp_{\Omega}\left(\alpha^{2}\frac{\omega_{1}+\omega_{2}}{2}\right) - \wp_{\Omega}\left(\alpha\frac{\omega_{1}+\omega_{2}}{2}\right)}{\wp_{\Omega}\left(\alpha^{2}\frac{\omega_{1}+\omega_{2}}{2}\right) - \wp_{\Omega}\left(\frac{\omega_{1}+\omega_{2}}{2}\right)}.$$
$$= -\frac{D_{\Omega}^{2}\left(\alpha^{2}\frac{\omega_{1}+\omega_{2}}{2}; \alpha\frac{\omega_{1}+\omega_{2}}{2}\right)}{D_{\Omega}^{2}\left(\alpha^{2}\frac{\omega_{1}+\omega_{2}}{2}; \frac{\omega_{1}+\omega_{2}}{2}\right)}.$$

Herein $\xi_{\Omega}^2(\alpha)$ gives a unit in k(2), the ray class field over k with conductor $2\mathfrak{o}_k$. For simplicity, we let $\tau = (\omega_1 + \omega_2)/2$ and $(\alpha^2 + \alpha + 1)\tau = u$ with some $u \in \Omega$. Then, using the formulas (K1) and (1.1), $\xi_{\Omega}^2(\alpha)$ can be further reformed as follows.

$$\begin{aligned} \xi_{\Omega}^{2}(\alpha) &= -\frac{D_{\Omega}^{2}(\alpha^{2}\tau;\,\alpha\tau)}{D_{\Omega}^{2}(\alpha^{2}\tau;\,\tau)} \\ &= -e \Big(E_{\Omega}(\alpha^{2}\tau,\alpha\tau) - E_{\Omega}(\alpha^{2}\tau,\tau) \Big) \frac{\mathcal{K}_{\Omega}^{2}((\alpha^{2}+\alpha)\tau)}{\mathcal{K}_{\Omega}^{2}(\alpha^{2}\tau) \mathcal{K}_{\Omega}^{2}(\alpha\tau)} \frac{\mathcal{K}_{\Omega}^{2}(\alpha^{2}\tau) \mathcal{K}_{\Omega}^{2}(\tau)}{\mathcal{K}_{\Omega}^{2}((\alpha^{2}+1)\tau)} \\ &= -e \Big(E_{\Omega}(\alpha^{2}\tau,(\alpha-1)\tau) \Big) \frac{\mathcal{K}_{\Omega}^{2}(-\tau+u) \mathcal{K}_{\Omega}^{2}(\tau)}{\mathcal{K}_{\Omega}^{2}(\alpha\tau) \mathcal{K}_{\Omega}^{2}(-\alpha\tau+u)} \end{aligned}$$

$$= -e \left(2 E_{\Omega}(\alpha \tau, \tau) \right) \frac{\mathcal{K}_{\Omega}^{4}(\tau)}{\mathcal{K}_{\Omega}^{4}(\alpha \tau)}$$

Hereby

$$2 E_{\Omega}(\alpha \tau, \tau) = E_{\Omega}(\alpha \frac{\omega_1 + \omega_2}{2}, \omega_1 + \omega_2)$$

$$\equiv E_{\Omega}(\frac{\omega_1}{2}, \omega_1 + \omega_2) \text{ or } E_{\Omega}(\frac{\omega_2}{2}, \omega_1 + \omega_2) \pmod{\mathbf{Z}}$$

$$\equiv \frac{1}{2} \pmod{\mathbf{Z}}.$$

and hence $e(2E_{\Omega}(\alpha\tau,\tau)) = -1$. Then we have

(1.3)
$$\xi_{\Omega}^{2}(\alpha) = \frac{\mathcal{K}_{\Omega}^{4}\left(\frac{\omega_{1}+\omega_{2}}{2}\right)}{\mathcal{K}_{\Omega}^{4}\left(\alpha\frac{\omega_{1}+\omega_{2}}{2}\right)}.$$

2. Characters ε_{Ω} and $\tilde{\varepsilon}_{\Omega}$.

As in Section 1, let Ω be an \mathfrak{o}_k -ideal and let $\{\omega_1, \omega_2\}$ a fixed basis of Ω . Then, using the formulas (1.2), (K2) and (K4), we have

$$\begin{split} &\prod_{\substack{x \in \operatorname{Ker}(\alpha) \\ x \neq 0}} f_{\Omega}(x) \\ &= e\Big(\frac{1}{8}(N\alpha - 1) E_{\Omega}(\omega_{2}, \omega_{1})\Big) \prod_{\substack{x \in \operatorname{Ker}(\alpha) \\ x \neq 0}} \frac{\mathcal{K}_{\Omega}(x) \mathcal{K}_{\Omega}\Big(x + \frac{\omega_{1} + \omega_{2}}{2}\Big)}{\mathcal{K}_{\Omega}\big(x + \frac{\omega_{1}}{2}\big) \mathcal{K}_{\Omega}\big(x + \frac{\omega_{2}}{2}\big)} \\ &= e\Big(\frac{1}{8}(N\alpha - 1) E_{\Omega}(\omega_{2}, \omega_{1})\Big) \times \\ &\prod_{\substack{x \in \operatorname{Ker}(\alpha) \\ x \neq 0}} \frac{\mathcal{K}_{\Omega}\Big(x + \frac{\omega_{1} + \omega_{2}}{2}\Big)}{\mathcal{K}_{\Omega}(x)} \frac{\mathcal{K}_{\Omega}(x)}{\mathcal{K}_{\Omega}\big(x + \frac{\omega_{1}}{2}\big)} \frac{\mathcal{K}_{\Omega}(x)}{\mathcal{K}_{\Omega}\big(x + \frac{\omega_{2}}{2}\big)} \\ &= e\Big(\frac{1}{8}(N\alpha - 1) E_{\Omega}(\omega_{2}, \omega_{1})\Big) \frac{\mathcal{K}_{\alpha^{-1}\Omega}\Big(\frac{\omega_{1} + \omega_{2}}{2}\Big)}{\mathcal{K}_{\Omega}\Big(\frac{\omega_{1} + \omega_{2}}{2}\Big)} \frac{\mathcal{K}_{\Omega}\Big(\frac{\omega_{1}}{2}\Big)}{\mathcal{K}_{\alpha^{-1}\Omega}\Big(\frac{\omega_{2}}{2}\Big)} \\ &= e\Big(\frac{1}{8}(N\alpha - 1) E_{\Omega}(\omega_{2}, \omega_{1})\Big) \alpha \frac{\mathcal{K}_{\Omega}\Big(\alpha \frac{\omega_{1} + \omega_{2}}{2}\Big)}{\mathcal{K}_{\Omega}\Big(\frac{\omega_{1} + \omega_{2}}{2}\Big)} \frac{\mathcal{K}_{\Omega}\Big(\frac{\omega_{1}}{2}\Big)}{\mathcal{K}_{\Omega}\Big(\alpha \frac{\omega_{1}}{2}\Big)} \frac{\mathcal{K}_{\Omega}\Big(\frac{\omega_{2}}{2}\Big)}{\mathcal{K}_{\Omega}(\alpha \frac{\omega_{2}}{2}\Big)}. \end{split}$$

Hence

$$\xi_{\Omega}(\alpha) = \alpha \left(\prod_{\substack{x \in \operatorname{Ker}(\alpha) \\ x \neq 0}} f_{\Omega}(x)\right)^{-1}$$
$$= e\left(\frac{1}{8}(N\alpha - 1) E_{\Omega}(\omega_{1}, \omega_{2})\right) \frac{\mathcal{K}_{\Omega}\left(\frac{\omega_{1} + \omega_{2}}{2}\right)}{\mathcal{K}_{\Omega}\left(\alpha\frac{\omega_{1} + \omega_{2}}{2}\right)} \frac{\mathcal{K}_{\Omega}\left(\alpha\frac{\omega_{1}}{2}\right)}{\mathcal{K}_{\Omega}\left(\frac{\omega_{2}}{2}\right)} \frac{\mathcal{K}_{\Omega}\left(\alpha\frac{\omega_{2}}{2}\right)}{\mathcal{K}_{\Omega}\left(\frac{\omega_{2}}{2}\right)}.$$

Here we define ε_{Ω} by

(2.1)
$$\varepsilon_{\Omega}(\alpha) := e\left(\frac{1}{8}(N\alpha - 1)E_{\Omega}(\omega_1, \omega_2)\right) \prod_{\rho} \frac{\mathcal{K}_{\Omega}(\alpha\rho)}{\mathcal{K}_{\Omega}(\rho)}$$

for $\alpha \in J^*(2)$, where ρ runs over the set $\{\frac{\omega_1}{2}, \frac{\omega_2}{2}, \frac{\omega_1 + \omega_2}{2}\}$. Then we have

(2.2)
$$\xi_{\Omega}(\alpha) = \varepsilon_{\Omega}(\alpha) \frac{\mathcal{K}_{\Omega}^{2}\left(\frac{\omega_{1}+\omega_{2}}{2}\right)}{\mathcal{K}_{\Omega}^{2}\left(\alpha \frac{\omega_{1}+\omega_{2}}{2}\right)}.$$

From the definition, it is easy to see that $\varepsilon_{\Omega}^4(\alpha) = 1$. Of course, the definition of ε_{Ω} depends on the basis $\{\omega_1, \omega_2\}$ of Ω . Indeed, by a short calculation, we have the following

Lemma 2-1. Any of three substitutions $(\omega_1, \omega_2) \rightarrow (\omega_2, \omega_1)$, $(\omega_1, \omega_2) \rightarrow (\omega_2, -\omega_1)$ and $(\omega_1, \omega_2) \rightarrow (\omega_1, \omega_1 + \omega_2)$ do multiply $\varepsilon_{\Omega}(\alpha)$ by the quantity

$$\chi_4 \circ N(\alpha) = \chi_4(N\alpha) := (-1)^{\frac{1}{2}(N\alpha-1)}.$$

Remark. $\chi_4 \circ N$ is a quadratic character of $(\mathfrak{o}_k/4\mathfrak{o}_k)^{\times}$. In particular, in the case where $N\alpha \equiv 1 \pmod{4}$ for any $\alpha \in J^*(2)$, the definition of ε_{Ω} does not depend on the choice of basis $\{\omega_1, \omega_2\}$ of Ω .

In case (a) where $(\mathfrak{o}_k/2\mathfrak{o}_k)^{\times} \cong \{1\}$, since $\alpha \equiv 1 \pmod{2O}$ for any $\alpha \in J^*(2)$, we have $\varepsilon_{\Omega}^2(\alpha) = \xi_{\Omega}^2(\alpha) = 1$.

In case (b) where $(\mathfrak{o}_k/2\mathfrak{o}_k)^{\times}$ is a group of order 2, we first choose a basis $\{\omega_1, \omega_2\}$ of Ω so that $\omega_1/2$ and $\omega_2/2$ represent two distinct primitive 2-division points of Ω . Then for any $\alpha \in J^*(2)$, we have

$$\alpha \, \frac{\omega_1 + \omega_2}{2} \equiv \frac{\omega_1 + \omega_2}{2} \pmod{\Omega}$$

and $\varepsilon_{\Omega}^2(\alpha) = \xi_{\Omega}^2(\alpha)$ by the formulas (2.2) and (K1). Especially in this case, if $\alpha \not\equiv 1 \pmod{2\mathfrak{o}_k}$, then $\varepsilon_{\Omega}^2(\alpha) = -1$ (see Sec.1). Moreover, by Lemma 2-1, the same

assertion holds without any restriction on the choice of basis of Ω .

In case (c) where $(\mathfrak{o}_k/2\mathfrak{o}_k)^{\times}$ is a group of order 3, from the equations (1.3) and (2.2), we see that $\varepsilon_{\Omega}^2(\alpha) = 1$ for any $\alpha \in J^*(2)$.

Consequently we see that in both cases (a) and (c) ε_{Ω} takes value in $\{\pm 1\}$, and in the remaining case (b) it takes value in $\{\pm 1, \pm \sqrt{-1}\}$. Moreover, we have the following

Proposition 2-2. For any $\alpha \in J^*(2)$, $\varepsilon_{\Omega}(\alpha)$ is determined depending only on the class of α modulo $4\mathfrak{o}_k$.

Proof. Let's assume that $\alpha_1 \equiv \alpha \pmod{4\mathfrak{o}_k}$, i.e. $\alpha_1 = \alpha + 4u$ with some $u \in \mathfrak{o}_k$. Then, on the one hand, since

$$N\alpha_1 = N\alpha + 4Tr(\overline{\alpha}u) + 16Nu\,,$$

we have

$$e\left(\frac{1}{8}(N\alpha_1 - 1)E_{\Omega}(\omega_1, \omega_2)\right)$$
$$= e\left(\frac{1}{8}(N\alpha - 1)E_{\Omega}(\omega_1, \omega_2)\right) \cdot e\left(\frac{1}{2}Tr(\overline{\alpha}u)E_{\Omega}(\omega_1, \omega_2)\right),$$

where Tr means the trace map as usual. On the other hand, by the formula (K1)

$$\prod_{\rho} \mathcal{K}_{\Omega}(\alpha_{1}\rho) = \prod_{\rho} \mathcal{K}_{\Omega}(\alpha\rho + 4u\rho) = e(M) \prod_{\rho} \mathcal{K}_{\Omega}(\alpha\rho),$$

where ρ runs over the set $\{\frac{\omega_1}{2}, \frac{\omega_2}{2}, \frac{\omega_1 + \omega_2}{2}\}$ and M is given by

$$M = 2\left(\sum_{\rho} N\rho\right) \cdot E_{\Omega}(u,\alpha).$$

Moreover a short calculation shows that

$$M \equiv \frac{1}{2} (\overline{\omega_1} \omega_2 + \omega_1 \overline{\omega_2}) E_{\Omega}(u, \alpha) \pmod{\mathbf{Z}}$$
$$\equiv \frac{1}{2} (\overline{u} \alpha + u \overline{\alpha}) E_{\Omega}(\omega_1, \omega_2) \pmod{\mathbf{Z}}$$
$$= \frac{1}{2} Tr(\overline{u} \alpha) E_{\Omega}(\omega_1, \omega_2).$$

Hence we have $\varepsilon_{\Omega}(\alpha_1) = \varepsilon_{\Omega}(\alpha)$.

Remark. In the same way as in the proof of Proposition 2-2, we can see that $\varepsilon_{\Omega}^2(\alpha)$ is determined depending only on the class of α modulo $2\mathfrak{o}_k$.

Proposition 2-2 suggests an expectation that ε_{Ω} could be a character of $(\mathfrak{o}_k/4\mathfrak{o}_k)^{\times}$. However it is not true in general. Namely, in the next section, we shall prove the following

Theorem 2-3. $\varepsilon_{\Omega}(\alpha\beta) = \varepsilon_{\Omega}(\alpha)^{N\beta}\varepsilon_{\Omega}(\beta) = \varepsilon_{\Omega}(\alpha)\varepsilon_{\Omega}(\beta)^{N\alpha}$ for any $\alpha, \beta \in J^{*}(2)$.

Theorem 2-3 illustrates an action of Gal(k^{ab}/\mathcal{H}) on $\varepsilon_{\Omega}(\alpha)$, where \mathcal{H} is the Hilbert class field over k. Namely, we let $\sigma(\beta) := ((\beta), k^{ab}/\mathcal{H})$, the Artin automorphism belonging to the principal ideal $(\beta) = \beta \mathfrak{o}_k$. Then,

(2.3)
$$\varepsilon_{\Omega}(\alpha)^{\sigma(\beta)} = \varepsilon_{\Omega}(\alpha)^{N\beta} = \frac{\varepsilon_{\Omega}(\alpha\beta)}{\varepsilon_{\Omega}(\beta)}.$$

At any rate, as a consequence of Theorem 2-3, we see that in both cases (a) and (c) ε_{Ω} defines a character on $(\mathfrak{o}_k/4\mathfrak{o}_k)^{\times}$ of order 2. Also in case (b), if $N\alpha \equiv 1 \pmod{4}$ for any $\alpha \in J^*(2)$, then ε_{Ω} defines a character on $(\mathfrak{o}_k/4\mathfrak{o}_k)^{\times}$ of order 4.

Now let $-d_k$ be the discriminant of k. Then we are in case (b) if and only if $4 | d_k$. Moreover, if $d_k = 4d_0$ with $d_0 \equiv 1 \pmod{4}$, it always holds that $N\alpha \equiv 1 \pmod{4}$ for any $\alpha \in J^*(2)$. However in the case where $d_k = 4d_0$ with $d_0 \equiv 2 \pmod{4}$, we see that $N\alpha \equiv -1 \pmod{4}$ for any $\alpha \in J^*(2)$ such that $\alpha \not\equiv 1 \pmod{2\mathfrak{o}_k}$. Hence in this case, ε_{Ω} cannot be a character on $(\mathfrak{o}_k/4\mathfrak{o}_k)^{\times}$. Indeed, by Theorem 2-3, we have

$$\frac{\varepsilon_{\Omega}(\alpha\beta)}{\varepsilon_{\Omega}(\alpha)\varepsilon_{\Omega}(\beta)} = \varepsilon_{\Omega}(\alpha)^{N\beta-1} = -1$$

for any α , $\beta \in J^*(2)$ such that $\alpha \not\equiv 1$, $\beta \not\equiv 1 \pmod{2\mathfrak{o}_k}$. In the case where $d_k = 4d_0$ with $d_0 \equiv 2 \pmod{4}$, in place of ε_{Ω} , we consider $\tilde{\varepsilon}_{\Omega}$ defined by

$$\tilde{\varepsilon}_{\Omega}(\alpha) := e\left(\frac{1}{8}(N\alpha - 1)\right)\varepsilon_{\Omega}(\alpha).$$

Then $\tilde{\varepsilon}_{\Omega}$ also satisfies the cocycle property, i.e.

$$\tilde{\varepsilon}_{\Omega}(\alpha\beta) = \tilde{\varepsilon}_{\Omega}(\alpha)^{N\beta}\tilde{\varepsilon}_{\Omega}(\beta) = \tilde{\varepsilon}_{\Omega}(\alpha)\tilde{\varepsilon}_{\Omega}(\beta)^{N\alpha}$$

for any $\alpha, \beta \in J^*(2)$. It is also true that the value $\tilde{\varepsilon}_{\Omega}(\alpha)$ depends only on the class of α modulo $4\mathfrak{o}_k$ and further $\tilde{\varepsilon}_{\Omega}^2(\alpha) = 1$ for any $\alpha \in J^*(2)$. Indeed, by Remark to Proposition 2-2, $\varepsilon_{\Omega}^2(\alpha) = -1$ if and only if $\alpha \not\equiv 1 \pmod{2\mathfrak{o}_k}$ and equivalently $N\alpha \not\equiv 1 \pmod{4}$. Hence $\tilde{\varepsilon}_{\Omega}$ defines a character on $(\mathfrak{o}_k/4\mathfrak{o}_k)^{\times}$ of order 2. We will use this modified character $\tilde{\varepsilon}_{\Omega}$ in Section 4.

3. Proof of Theorem 2-3.

Let all notations be the same as those in Section 2. For a complete proof of Theorem 2-3, it suffices to prove a half part of equalities, i.e.

$$\varepsilon_{\Omega}(\alpha\beta) = \varepsilon_{\Omega}(\alpha)\varepsilon_{\Omega}(\beta)^{N\alpha},$$

that is equivalent to the equality

$$\xi_{\Omega}(\alpha\beta) = \xi_{\Omega}(\alpha)\,\xi_{\Omega}(\beta)^{N\alpha} \left(\frac{\mathcal{K}_{\Omega}^{2}\left(\beta\frac{\omega_{1}+\omega_{2}}{2}\right)}{\mathcal{K}_{\Omega}^{2}\left(\frac{\omega_{1}+\omega_{2}}{2}\right)}\right)^{N\alpha} \frac{\mathcal{K}_{\Omega}^{2}\left(\alpha\frac{\omega_{1}+\omega_{2}}{2}\right)}{\mathcal{K}_{\Omega}^{2}\left(\alpha\beta\frac{\omega_{1}+\omega_{2}}{2}\right)}.$$

For this purpose we can apply the product formula of the Bayad function f_{Ω} in Theorem 1-2. For simplicity, we let $\tau = (\omega_1 + \omega_2)/2$ again. Then on the one hand, we have $D^2(\alpha, \beta, \omega, \alpha, \beta, z)$

$$f_{\Omega}(\alpha\beta z)\frac{D_{\Omega}^{2}(\alpha\beta z\,;\,\alpha\beta\tau)}{D_{\Omega}^{2}(\alpha\beta z\,;\,\tau)} = \xi_{\Omega}(\alpha\beta)\prod_{\substack{x\in\operatorname{Ker}(\alpha\beta)\\ \tilde{r}\,\in\,\mathfrak{o}_{k}}}f_{\Omega}(z+x)$$
$$=\xi_{\Omega}(\alpha\beta)\prod_{\substack{\tilde{r}\,\operatorname{mod}\,\alpha\beta\mathfrak{o}_{k}\\ \tilde{r}\,\in\,\mathfrak{o}_{k}}}f_{\Omega}(z+\tilde{r}\,x_{\alpha\beta}),$$

where $x_{\alpha\beta}$ is a fixed primitive $\alpha\beta$ -division point of C/Ω . On the other hand,

$$\begin{split} f_{\Omega}(\alpha\beta z) \frac{D_{\Omega}^{2}(\alpha\beta z\,;\,\alpha\beta\tau)}{D_{\Omega}^{2}(\alpha\beta z\,;\,\tau)} &= \frac{D_{\Omega}^{2}(\alpha\beta z\,;\,\alpha\beta\tau)}{D_{\Omega}^{2}(\alpha\beta z\,;\,\alpha\tau)} \,\times\, f_{\Omega}(\,\alpha(\beta z\,)\,) \frac{D_{\Omega}^{2}(\,\alpha(\beta z\,)\,;\,\alpha\tau)}{D_{\Omega}^{2}(\,\alpha(\beta z\,)\,;\,\tau)} \\ &= \frac{D_{\Omega}^{2}(\alpha\beta z\,;\,\alpha\beta\tau)}{D_{\Omega}^{2}(\alpha\beta z\,;\,\alpha\tau)} \times \xi_{\Omega}(\alpha) \prod_{\substack{r_{1} \bmod \alpha \mathfrak{o}_{k} \\ r_{1} \in \mathfrak{o}_{k}}} f_{\Omega}(\beta z + r_{1}\,x_{\alpha}), \end{split}$$

where $x_{\alpha} := \beta x_{\alpha\beta}$ and this gives a primitive α -division point of C/Ω . Moreover, in the above last equality,

$$\begin{split} &\prod_{\substack{r_1 \bmod \alpha \mathfrak{o}_k \\ r_1 \in \mathfrak{o}_k}} f_\Omega(\beta z + r_1 \, x_\alpha) \\ &= \prod_{\substack{r_1 \bmod \alpha \mathfrak{o}_k \\ r_1 \in \mathfrak{o}_k}} f_\Omega(\beta(z + r_1 \, x_{\alpha\beta})) \frac{D_\Omega^2(\beta(z + r_1 x_{\alpha\beta}); \beta \tau)}{D_\Omega^2(\beta(z + r_1 x_{\alpha\beta}); \tau)} \\ &\times \prod_{\substack{r_1 \bmod \alpha \mathfrak{o}_k \\ r_1 \in \mathfrak{o}_k}} \frac{D_\Omega^2(\beta z + r_1 x_\alpha; \tau)}{D_\Omega^2(\beta z + r_1 x_\alpha; \beta \tau)} \\ &= \xi_\Omega(\beta)^{N\alpha} \prod_{\substack{r_1 \bmod \alpha \mathfrak{o}_k \\ r_1 \in \mathfrak{o}_k}} \frac{D_\Omega^2(\beta z + r_1 x_\alpha; \tau)}{D_\Omega^2(\beta z + r_1 x_\alpha; \beta \tau)} \\ &\times \prod_{\substack{r_1 \bmod \alpha \mathfrak{o}_k \\ r_1 \in \mathfrak{o}_k}} f_\Omega(z + r_1 x_{\alpha\beta} + r_2 x_\beta) \end{split}$$

$$=\xi_{\Omega}(\beta)^{N\alpha}\prod_{\substack{r_{1} \mod \alpha \mathfrak{o}_{k} \\ r_{1} \in \mathfrak{o}_{k}}} \frac{D_{\Omega}^{2}(\beta z + r_{1}x_{\alpha}; \tau)}{D_{\Omega}^{2}(\beta z + r_{1}x_{\alpha}; \beta \tau)} \times \prod_{\tilde{r} \mod \alpha \beta \mathfrak{o}_{k}} f_{\Omega}(z + \tilde{r}x_{\alpha\beta}).$$

Herein $x_{\beta} := \alpha x_{\alpha\beta}$ and this gives a primitive β -division point of C/Ω . Note that $\{r_1 + \alpha r_2 \mid r_1 \mod \alpha \mathfrak{o}_k, r_2 \mod \beta \mathfrak{o}_k\}$ constitutes a complete system of representatives of $\mathfrak{o}_k/\alpha\beta\mathfrak{o}_k$. Hence we obtain the following equality

$$\xi_{\Omega}(\alpha\beta) = \xi_{\Omega}(\alpha)\xi_{\Omega}(\beta)^{N\alpha} \times F_{\Omega}(z; \alpha, \beta)$$

where

$$F_{\Omega}(z; \alpha, \beta) = \frac{D_{\Omega}^{2}(\alpha\beta z; \alpha\beta\tau)}{D_{\Omega}^{2}(\alpha\beta z; \alpha\tau)} \times \prod_{\substack{r_{1} \bmod \alpha \mathfrak{o}_{k} \\ r_{1} \in \mathfrak{o}_{k}}} \frac{D_{\Omega}^{2}(\beta z + r_{1}x_{\alpha}; \tau)}{D_{\Omega}^{2}(\beta z + r_{1}x_{\alpha}; \beta\tau)}.$$

Moreover, by the formula (D6), we have

$$\begin{split} F_{\Omega}(z;\alpha,\beta) &= \frac{D_{\Omega}^{2}(\alpha\beta z;\alpha\beta\tau)}{D_{\Omega}^{2}(\alpha\beta z;\alpha\tau)} \cdot \frac{D_{\alpha^{-1}\Omega}^{2}(\beta z;\tau)}{D_{\alpha^{-1}\Omega}^{2}(\beta z;\beta\tau)} \cdot \frac{\mathcal{K}_{\Omega}^{2}(\beta\tau)^{N\alpha}}{\mathcal{K}_{\alpha^{-1}\Omega}^{2}(\beta\tau)} \cdot \frac{\mathcal{K}_{\Omega}^{2}(\gamma)^{N\alpha}}{\mathcal{K}_{\Omega}^{2}(\tau)^{N\alpha}} \\ &\times e\Big(E_{\Omega}\Big(\sum_{r_{1} \bmod \alpha \mathbf{o}_{k}} r_{1}x_{\alpha}, 2(1-\beta)\tau\Big)\Big) \\ &= \frac{\mathcal{K}_{\Omega}^{2}(\beta\tau)^{N\alpha}}{\mathcal{K}_{\Omega}^{2}(\alpha\beta\tau)} \cdot \frac{\mathcal{K}_{\Omega}^{2}(\alpha\tau)}{\mathcal{K}_{\Omega}^{2}(\tau)^{N\alpha}} \\ &= \left(\frac{\mathcal{K}_{\Omega}^{2}\Big(\beta\frac{\omega_{1}+\omega_{2}}{2}\Big)}{\mathcal{K}_{\Omega}^{2}\Big(\frac{\omega_{1}+\omega_{2}}{2}\Big)}\right)^{N\alpha} \frac{\mathcal{K}_{\Omega}^{2}\Big(\alpha\frac{\omega_{1}+\omega_{2}}{2}\Big)}{\mathcal{K}_{\Omega}^{2}\Big(\alpha\beta\frac{\omega_{1}+\omega_{2}}{2}\Big)}, \end{split}$$

and this proves Theorem 2-3.

4. Quadratic reciprocity law.

Let all notations be the same as those in the preceding sections. We fix a basis $\{\omega_1, \omega_2\}$ of an \mathfrak{o}_k -ideal Ω . For any α, β in $J^*(2)$ such that $(\alpha, \beta) = 1$, we consider the quadratic symbol $(\frac{\alpha}{\beta})_2$ given by

$$\left(\frac{\alpha}{\beta}\right)_2 = \prod_{x \in S_\beta} \varepsilon(\alpha, x),$$

where S_{β} means a subset of $\operatorname{Ker}(\beta) = \operatorname{Ker}_{\Omega}(\beta)$ such that $\operatorname{Ker}(\beta) = \{0, S_{\beta}, -S_{\beta}\}$, and $\varepsilon(\alpha, x) \in \{\pm 1\}$ is so determined that $\alpha x = \varepsilon(\alpha, x)\gamma(x)$ with unique $\gamma(x)$ in S_{β} . Note

that this definition of $\left(\frac{\alpha}{\beta}\right)_2$ does not depend on the choice of S_β (cf. [9]).

In [6], we gave a revised version of Bayad's reciprocity formula on $\left(\frac{\alpha}{\beta}\right)_2$ (Theorem 2-1 in [6]). In this opportunity we further reformulte our formula in the following form.

Theorem 4-1. For $\alpha, \beta \in J^*(2)$ such that $(\alpha, \beta) = 1$,

$$\left(\frac{\alpha}{\beta}\right)_2 \left(\frac{\beta}{\alpha}\right)_2 = (-1)^{\frac{1}{4}(N\alpha-1)(N\beta-1)} \times \frac{\varepsilon_{\Omega}(\alpha)^{\frac{1}{2}(N\beta-1)}}{\varepsilon_{\Omega}(\beta)^{\frac{1}{2}(N\alpha-1)}}.$$

Proof. Since f_{Ω} is an odd function, $f_{\Omega}(\alpha x) = \varepsilon(\alpha, x) f_{\Omega}(\gamma(x))$ for any $x \in S_{\beta}$. Then we have

$$\left(\frac{\alpha}{\beta}\right)_2 = \prod_{x \in S_\beta} \varepsilon(\alpha, x) = \prod_{x \in S_\beta} \frac{f_\Omega(\alpha x)}{f_\Omega(\gamma(x))} = \prod_{x \in S_\beta} \frac{f_\Omega(\alpha x)}{f_\Omega(x)}.$$

Moreover, using the product formula in Theorem 1-2, we have

$$\left(\frac{\alpha}{\beta}\right)_2 = \prod_{x \in S_\beta} \left(\frac{D_\Omega^2\left(\alpha x ; \frac{\omega_1 + \omega_2}{2}\right)}{D_\Omega^2\left(\alpha x ; \alpha \frac{\omega_1 + \omega_2}{2}\right)} \xi_\Omega(\alpha) \prod_{\substack{x' \in \operatorname{Ker}(\alpha) \\ x' \neq 0}} f_\Omega(x + x') \right)$$
$$= \xi_\Omega(\alpha)^{\frac{N\beta - 1}{2}} A_\beta^{(\alpha)} \prod_{x \in S_\beta} \prod_{x' \in S_\alpha} f_\Omega(x + x') f_\Omega(x - x'),$$

where

$$A_{\beta}^{(\alpha)} = \prod_{x \in S_{\beta}} \frac{D_{\Omega}^{2}(\alpha x ; \tau)}{D_{\Omega}^{2}(\alpha x ; \alpha \tau)} \quad \text{with} \quad \tau = \frac{\omega_{1} + \omega_{2}}{2}.$$

By the formula (D8), we have

$$\begin{split} A_{\beta}^{(\alpha)} &= \prod_{x \in S_{\beta}} \frac{\wp_{\Omega}(\alpha x) - \wp_{\Omega}(\tau)}{\wp_{\Omega}(\alpha x) - \wp_{\Omega}(\alpha \tau)} \quad (\text{ original form in } [6]) \\ &= \prod_{x \in S_{\beta}} \frac{\wp_{\Omega}(\tau) - \wp_{\Omega}(x)}{\wp_{\Omega}(\alpha \tau) - \wp_{\Omega}(x)} \quad (\wp_{\Omega} \text{ is even and } \Omega \text{ ellitic}) \\ &= \prod_{x \in S_{\beta}} \frac{D_{\Omega}(\tau; x) D_{\Omega}(\tau; -x)}{D_{\Omega}(\alpha \tau; x) D_{\Omega}(\alpha \tau; -x)} \\ &= \prod_{x \in \text{Ker}(\beta)} \frac{D_{\Omega}(\tau; x)}{D_{\Omega}(\alpha \tau; x)}, \end{split}$$

and then using the formulas (D4) and (D7) $\,$ (with $\Lambda=\beta^{-1}\Omega$)

$$A_{\beta}^{(\alpha)} = \frac{\mathcal{K}_{\Omega}(\alpha\tau)^{N\beta}}{\mathcal{K}_{\beta^{-1}\Omega}(\alpha\tau)} \cdot \frac{\mathcal{K}_{\beta^{-1}\Omega}(\tau)}{\mathcal{K}_{\Omega}(\tau)^{N\beta}} = \left\{\frac{\mathcal{K}_{\Omega}(\alpha\tau)}{\mathcal{K}_{\Omega}(\tau)}\right\}^{N\beta} \cdot \frac{\mathcal{K}_{\Omega}(\beta\tau)}{\mathcal{K}_{\Omega}(\alpha\beta\tau)}$$
$$= H(\alpha, \beta; \tau) \left\{\frac{\mathcal{K}_{\Omega}(\alpha\tau)}{\mathcal{K}_{\Omega}(\tau)}\right\}^{N\beta-1}.$$

Herein

$$H(\alpha,\beta;\tau) := \frac{\mathcal{K}_{\Omega}(\alpha\tau) \,\mathcal{K}_{\Omega}(\beta\tau)}{\mathcal{K}_{\Omega}(\tau) \,\mathcal{K}_{\Omega}(\alpha\beta\tau)}.$$

Note that $H(\alpha, \beta; \tau) = H(\beta, \alpha; \tau)$. Moreover, since

$$\xi_{\Omega}(\alpha) = \varepsilon_{\Omega}(\alpha) \frac{\mathcal{K}_{\Omega}^2(\tau)}{\mathcal{K}_{\Omega}^2(\alpha\tau)}$$

we have

$$\xi_{\Omega}(\alpha)^{\frac{1}{2}(N\beta-1)} A_{\beta}^{(\alpha)} = H(\alpha,\beta;\tau) \varepsilon_{\Omega}(\alpha)^{\frac{1}{2}(N\beta-1)}$$

and hence

$$\left(\frac{\alpha}{\beta}\right)_2 = H(\alpha,\beta;\tau) \varepsilon_{\Omega}(\alpha)^{\frac{1}{2}(N\beta-1)} \times \prod_{x \in S_{\beta}} \prod_{x' \in S_{\alpha}} f_{\Omega}(x+x') f_{\Omega}(x-x').$$

Symmetrically we have

$$\left(\frac{\beta}{\alpha}\right)_2 = H(\beta, \alpha; \tau) \varepsilon_{\Omega}(\beta)^{\frac{1}{2}(N\alpha-1)} \prod_{x'\in S_{\alpha}} \prod_{x\in S_{\beta}} f_{\Omega}(x'+x) f_{\Omega}(x'-x)$$
$$= H(\alpha, \beta; \tau) \varepsilon_{\Omega}(\beta)^{\frac{1}{2}(N\alpha-1)} (-1)^{\frac{1}{4}(N\alpha-1)(N\beta-1)}$$
$$\times \prod_{x\in S_{\beta}} \prod_{x'\in S_{\alpha}} f_{\Omega}(x+x') f_{\Omega}(x-x'),$$

and hence

$$\left(\frac{\alpha}{\beta}\right)_2 \left(\frac{\beta}{\alpha}\right)_2 = \left(\frac{\alpha}{\beta}\right)_2 \left(\frac{\beta}{\alpha}\right)_2^{-1} = (-1)^{\frac{1}{4}(N\alpha-1)(N\beta-1)} \times \frac{\varepsilon_{\Omega}(\alpha)^{\frac{1}{2}(N\beta-1)}}{\varepsilon_{\Omega}(\beta)^{\frac{1}{2}(N\alpha-1)}}$$

Thus we have furnished the proof of Theorem 4-1.

Remark. As is explained in Section 2, ε_{Ω} is a character on $(\mathfrak{o}_k/4\mathfrak{o}_k)^{\times}$ except for the case where $d_k = 4d_0$ and $d_0 \equiv 2 \pmod{4}$. In the exceptional case, we may replace ε_{Ω} in Theorem 4-1 by a character $\tilde{\varepsilon}_{\Omega}$ on $(\mathfrak{o}_k/4\mathfrak{o}_k)^{\times}$, because

$$\frac{\varepsilon_{\Omega}(\alpha)^{\frac{1}{2}(N\beta-1)}}{\varepsilon_{\Omega}(\beta)^{\frac{1}{2}(N\alpha-1)}} = \frac{e\left(\frac{1}{8}(N\alpha-1)\right)^{\frac{1}{2}(N\beta-1)} \cdot \varepsilon_{\Omega}(\alpha)^{\frac{1}{2}(N\beta-1)}}{e\left(\frac{1}{8}(N\beta-1)\right)^{\frac{1}{2}(N\alpha-1)} \cdot \varepsilon_{\Omega}(\beta)^{\frac{1}{2}(N\alpha-1)}} = \frac{\tilde{\varepsilon}_{\Omega}(\alpha)^{\frac{1}{2}(N\beta-1)}}{\tilde{\varepsilon}_{\Omega}(\beta)^{\frac{1}{2}(N\alpha-1)}}$$

In the case where d_k is odd, since ε_{Ω} is a character of order 2, we have

$$\frac{\varepsilon_{\Omega}(\alpha)^{\frac{1}{2}(N\beta-1)}}{\varepsilon_{\Omega}(\beta)^{\frac{1}{2}(N\alpha-1)}} = \varepsilon_{\Omega}(\alpha)^{\frac{1}{2}(N\beta-1)} \varepsilon_{\Omega}(\beta)^{\frac{1}{2}(N\alpha-1)}.$$

In the case where $d_k = 4d_0$ with $d_0 \equiv 1 \pmod{4}$, $N\alpha \equiv 1 \pmod{4}$ for any $\alpha \in J^*(2)$, and hence we have the same equality as above. In the remaining case where $d_k = 4d_0$ with $d_0 \equiv 2 \pmod{4}$, since $\tilde{\varepsilon}_{\Omega}$ is a character of order 2, we have

$$\frac{\tilde{\varepsilon}_{\Omega}(\alpha)^{\frac{1}{2}(N\beta-1)}}{\tilde{\varepsilon}_{\Omega}(\beta)^{\frac{1}{2}(N\alpha-1)}} = \tilde{\varepsilon}_{\Omega}(\alpha)^{\frac{1}{2}(N\beta-1)} \tilde{\varepsilon}_{\Omega}(\beta)^{\frac{1}{2}(N\alpha-1)}.$$

Here we bring to mind that Hajir and Villegas ([5]) which proved the following law of quadratic reciprocity.

Theorem 4-2 ([5, Theorem 21]). For
$$\alpha, \beta \in J^*(2)$$
 such that $(\alpha, \beta) = 1$,
 $\left(\frac{\alpha}{\beta}\right)_2 \left(\frac{\beta}{\alpha}\right)_2 = (-1)^{\frac{1}{4}(N\alpha-1)(N\beta-1)} \kappa_4(\alpha)^{\frac{1}{2}(N\beta-1)} \kappa_4(\beta)^{\frac{1}{2}(N\alpha-1)}.$

In Theorem 4-2, κ_4 is a certain character of $(\mathfrak{o}_k/4\mathfrak{o}_k)^{\times}$ defined with use of the Galois action on the quotients of η -values of Dedekind. For a precise explanation for κ_4 , one should refer to [5]. Especially Lemma 12 in [5] is useful for the computation of $\kappa_4(\alpha)$.

Compairing Theorem 4-1 with Theorem 4-2, there arises some interesting questions as follows:

 Q_1 . What could be the relation between κ_4 and ε_{Ω} (or $\tilde{\varepsilon}_{\Omega}$)?

Q2. Does the definition of ε_{Ω} depend essentially on the \mathfrak{o}_k -ideal Ω ?

In the rest of this section, we attempt to make clear these questions. Hereafter we let $\{\omega, 1\}$ be the basis of \mathfrak{o}_k and let ω be so normalized as follows:

$$\omega = \begin{cases} \frac{-1 + \sqrt{-d_k}}{2} & \text{if } d_k \equiv 3 \pmod{4} \\ \sqrt{-d_0} & \text{if } d_k = 4d_0. \end{cases}$$

We take \mathfrak{o}_k itself for Ω , and we write ε_1 for $\varepsilon_{\mathfrak{o}_k}$ defined using the basis { ω , 1 }. Then, from a numerical computation, we have the following

Theorem 4-3. (i) In the case where d_k is odd, both of ε_1 and κ_4 are of order 2, and $\varepsilon_1 = \kappa_4$.

(ii) In the case where $d_k = 4d_0$ with $d_0 \equiv 1 \pmod{4}$, both of ε_1 and κ_4 are of order 4, and $\varepsilon_1 = \kappa_4^3$.

(iii) In the case where $d_k = 4d_0$ with $d_0 \equiv 2 \pmod{4}$, both of $\tilde{\varepsilon}_1$ and κ_4 are of order 2, and $\tilde{\varepsilon}_1 = \kappa_4$. Herein $\tilde{\varepsilon}_1$ means a character defined by $\tilde{\varepsilon}_1(\alpha) = e\left(\frac{1}{8}(N\alpha - 1)\right)\varepsilon_1(\alpha)$ for $\alpha \in J^*(2)$.

Now let Ω and Ω_1 be two \mathfrak{o}_k -ideals which are similar to each other, i.e. $\Omega_1 = \mu \Omega$ with some $\mu \in k$. We fix a basis $\{\omega_1, \omega_2\}$ of Ω and take $\{\mu\omega_1, \mu\omega_2\}$ for a basis of $\Omega_1 = \mu \Omega$. Then, from the definition (2.1) and the homogeneous property of $\mathcal{K}_{\Omega}(z)$, we see that

$$\varepsilon_{\Omega_1}(\alpha) = \varepsilon_{\mu\Omega}(\alpha) = \varepsilon_{\Omega}(\alpha) \text{ for any } \alpha \in J^*(2).$$

In each ideal class of k, there exists a prime ideal p of degree 1 such that

$$N\mathfrak{p} = p \equiv \begin{cases} 1 \pmod{4} & \text{when } d_k = 4d_0 \text{ with } d_0 \equiv 1 \pmod{4}. \\ \\ 1 \pmod{2} & \text{otherwise.} \end{cases}$$

Namely, we know that

$$(w_{\mathcal{H}}, 4) = \begin{cases} 4 & \text{when } d_k = 4d_0 \text{ with } d_0 \equiv 1 \pmod{4}, \\ 2 & \text{otherwise,} \end{cases}$$

where $w_{\mathcal{H}}$ means the number of roots of unity in the Hilbert class field \mathcal{H} over k. We let { $\omega + \nu$, p } be a canonical basis of **p**. ν is uniquely determined modulo p. Here we may assume additionally that

$$\nu \equiv \begin{cases} 0 \pmod{8} & \text{when } d_k \equiv 3 \pmod{4}. \\ \\ 1 \pmod{8} & \text{when } d_k \equiv 0 \pmod{4}. \end{cases}$$

Then, by a numerical computation with use of the basis $\{\omega + \nu, p\}$ of \mathfrak{p} , we can confirm that $\varepsilon_{\mathfrak{p}}(\alpha) = \varepsilon_1(\alpha)$ for any $\alpha \in J^*(2)$. Consequently, we can summarize our arguments as follows:

Theorem 4-4. (i) When $d_k = 4d_0$ with $d_0 \equiv 1 \pmod{4}$, the definition of ε_{Ω} depends neither on the choice of basis of Ω nor on Ω itself, and $\varepsilon_{\Omega} = \varepsilon_1 = \kappa_4^3$. (ii) When $d_k = \text{odd or } d_k = 4d_0$ with $d_0 \equiv 2 \pmod{4}$, for any Ω , ε_{Ω} is equal to one of $\{\varepsilon_1, \varepsilon_1 \cdot \chi_4 \circ N\}$

References

- [1] A. Bayad, Loi de rèciprocité quadratique dans les corps quadratiques imaginaires, Annals de l'institut Fourier 45 (1995), 1223-1237.
- [2] A. Bayad and J. G. Ayala, Formes de Jacobi et formules de distribution, J. Number Theory 109 (2004), 136-162.
- [3] A. Bayad and G. Robert, Amèlioration d'une congruence pour certains de Stickelberger quadratiques, Bull. Soc. Math. France 125 (1997), 249-267.
- [4] Ph. Cassou-Noguès and M. J.Taylor, "Elliptic Functions and Ring of Integers", Progress in Math., 66, Birkhäuser, 1987.
- [5] D. Hajir and F. R. Villegas, Explicit Elliptic Units I, Duke Math. Jour. 90 (3) (1997) 495-521.
- [6] H. Hayashi, Note on the Bayad reciprocity law in an imaginary quadratic number field , Bull. Sch. Eng. Kyushu Tokai Univ., 34 (2007) 41-52.
- [7] D. Kubert, Product formulae on elliptic curves, Inv. Math. 117 (1994) 227-273.
- [8] D. Kubert and S. Lang, "Modular Units", Grundlehren Math. Wiss, Springer, 1981.
- [9] T. Kubota, Reciprocities in Gauss' and Eisenstein's number fields, J. f
 ür reine und angew. Math., 208 (1961), 35-50.
- [10] S. Lang, "Elliptic Functions", Addison-Wesley, 1973.