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Abstract

This paper is a sequel to our previous paper of the same title [6]. Using the
results in Bayad-Ayala [2], the original Bayad function is expressed with use
of the Klein function, and all our results in [6] can be rewritten in a renewed
version (Theorems 1-2 and 4-1). In particular, we are deeply concerned with
the quantities {o(a) and AL) defined in [6] respectively with relation to the
product formula of Bayad function and the law of quadratic reciprocity in an
imaginary quadratic number field (Theorems 2-3 and 4-1). It is remarkable
that our renewed formula of quadratic reciprocity law has the quite similar form
to one of the formula of Hajir-Villegas [5], and this fact provides us another
interesting problem (Theorems 4-2, 4-3 and 4-4).

1. Terminologies and reformulation of a result on the Bayad function.

Let C, R and Z be respectively the field of complex and real numbers and the ring
of rational integers. By a C-lattice we mean a free Z-module of rank 2 which spans
C over R. For C-lattice Q with Z-basis {w;,ws} such that Im(w;/ws) > 0,

1
21

w1 W2
Wi Wi

w
- |w2|21m(w—;)

a(Q) :=

is a real positive number, which means the area of fundamental parallelogram of €2
and depends only on €2. Let Eqg be a R-bilinear form defined by

1
Eq(u,v) :

= 37a(@) (Tv — uv) for (u,v) e C xC.

Then Ej, is integral valued on Q x Q and Fq(w;,ws) = —1 for any basis {wq,ws} of 2
such that Im(w; /ws) > 0.

Here we summarize briefly about the Klein function Kq, the Jacobi form Dg and
their fundamental properties, quoting mainly from Bayad-Ayala [2]. For the detail,
one should refer also to Kubert [7] and Kubert-Lang [8]. The Klein function Kg
attached to a C-lattice (2 is defined by the infinite product

Ko(z) = ze 2219 H (1- i) e%+§(§)2
w
we\{0}
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for any z € C, where n(z,2) means the Weierstrass-Legendre eta function attached
to ). Kq has the following fundamental properties:
(K1) For pe Q

Ka(z + p) = xalp) e( Ealp, 2)/2) Ka(2),

where
1 if pe2Q,

XQ(P) =
-1 if pe Q) 29,

and e(x) = €™ for x € R.
(K2) Kgq(z) is homogeneous of degree 1, that is
IC)@()\Z) = )\’CQ(Z) for NeC*:=C \ {0}

In particular, Kqo(—z) = —Kq(2).
(K3) Kq(z) admits principal part z when z tends to 0, that is

lim Ka(2)

z—0 z

=1

Let 2 and A be two C-lattices such that 2 C A, and R be any complete system of
representatives of A/€). Then the following product formula holds:

Kal +
(K4) Ka(z) =e(Ea(z, ) x) H alz +7)
TER TER

The Jacobi form Dq associated with g is defined by

(11)  Da(z; @) = e( Ealz, WQ)W

for 2z, peC\Q.

Dq(z; ¢) satisfies the following fundamental properties:

a(z; ¢+ p) = Da(z; ) forany p € Q.

a(z+p; ) =e(Ealp,¢) ) Da(z; @) forany pe Q.
(25 ) =e( Ea(z, ¢) ) Da(p; 2).

a(z; ¢) is homogeneous of degree -1, that is

SO T S

Dya(Mz; Ap) = A Dg(z; @) for N e C*.
(D5) Dgq(z ¢) admits principal part % when z tends to 0, that is

limz - Dg(z; ¢) = 1.

z2—0



Heima HAYASHI

Let 2, A and R be the same as before. Then the main theorem in [2] asserts the
following product formulas:
(D6) For any z and ¢ € C'\ A,

L Ka(p)th:e ,
Da(z; ¢) = W};IQDQ(Z—F% ple(—Eq(z, ¢)).
(D7) For any z € C \ A,
1 ICQ < (A=)
H Do(z; x)" = IC(Ai)(z)
TER,z¢Q

With relation to the Weierstrass p-function, the following formulas hold:

(D8) Forany 2, € C\Q, pa(2) = pa(p) = Da(z; ¢)Da(z; =),
(D9) For any z € C\ Q, gh(z)=-2 HDQ(z; ©), where ¢ runs over the set of
%)

representatives of %Q /€2 such that ¢ ¢ Q.

The Bayad function fq attached to a C-lattice Q with basis {w;,ws} is originally
defined by

w1+ w
falz) =C pa(z) ~ pa(—5—)
Z e
. 90 (2)
with the constant C such that
w
206(%5)
C? =
w2 w1 + wa
pa(5) —va(—5—)

(see [1] and [6]). Of course this definition of fo depends on the choice of the basis
{w1,ws} of Q. By the formulas (D8) and (D9), fq(z) can be reformed as follow:

W1+QJ2)

C DQ(Z; )
faz) = -5
T 2 Da(es P)Dalz )
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A simple calculation (using (D8) and (D9)) shows that C; = +e(4FEq(ws, wi)).
Hence we may adopt

w1 + Wa
(1.2) fa(z) = e(=Eq(ws, w1)) o1 R

as the definition of Bayad function. Of course this definition also depends on the
choice of basis {wy,ws} of Q. fq is an Q-elliptic function and its divisor on C' /€ is

w1 + Wy w1 Wy

(fo) = (T) +(0) — (7) - <T)'

The following lemma is immediate from the definition (1.1) and the formula (K1).

Lemma 1-1([6, Lemma 1-1]). Under the above notations, we have

(1) Ja() - falz+ 5= =1, () Ja(2) - falz + ) = 1.

Hereafter let k£ be an imaginary quadratic number field and o4 be the ring of integers
in k. We mean by J*(2) the set { a € oy | («v, 20;) = 1}. For a fixed oj-ideal 2 and

an element « in o0, we define
Ker(a) = Kerg(a) =={ 2z € C/Q | ax =0 }.

We call the elements in Ker(«) a-division points of C/Q). In particular, z € Ker(a)
is called a primitive a-division point of C/Q if ayz # 0 for any «; € oy such that
oy ¢ aoy. Plainly, Ker(a) = a™1Q/Q and this is a finite group of order Na, where Na
means the absolute norm of a. Moreover, if z,, € Ker(«) is a fixed primitive a-division
point, then the map

op, = C/Q by r — rz,

induces an isomorphism of og-module from o/ onto Ker(«), and Ker(a) may be
written as { 7z, | ¥ mod aoy, r € o) }. Sometimes, for convenience sake, we use the
notation Ker(«), identifing it with a complete set of representatives of a~1Q/Q.

Using the formula (D8), we can restate our product formula for fo ( Theorem 1-3
in [6]) as follows.

Theorem 1-2 (Revised product formula). For any o in J*(2),

Dé(az; aw1+w2)

falor)———FF " =tl@) [[ falz+a).
Dg, ( az; 5 ) zeKer(a)
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where £q(a) is given by

fola) = H (fQ(x))_lzoz H fg($+%)
z€Ker(a) z€Ker(a)
z#0 z#0

Here we remark that if « =1 (mod 20;), Dg-factor in Theorem 1-2 can be deleted
and we have £&(a) = 1 as in Bayad [1]. In the rest of this section, we consider the
value £q(a) more precisely, reviewing our arguments in Sec. 1 of [6].

Now the multiplicative group (05/20x)* has 3 possibilities:

(a) (0x/20;)" = {1}, when 2 splits in k.
(b) (0x/204)* is a cyclic group of order 2, when 2 ramifies in k.
(¢) (o0x/20x)* is a cyclic group of order 3, when 2 remains prime in k.

In case (a), since @ =1 (mod 20;) for any a € J*(2), {3(a) =1 asin [1].

In case (b), by a suitable choice of basis {w;,ws} of Q, we may assume that w,;/2
and wy /2 represent two distinct primitive 2-division points of € and (w; +ws)/2 other
non-zero 2-division point. Under this assumption, we showed that £3(a) = —1 for
any a € J*(2) such that o # 1 (mod 20y,).

In case (c), we showed that for any o € J*(2) such that o Z 1 (mod 204)

(a2+a+1)w1;w250(m0d9)
and w1t w W+ w

: pa(o?™ 5 ) —pala— 5 )
Q(a>: - 2w1+w2 W1 + wao :
po(a’—75—) = gl )

2 2

2 2&)14‘0)2. w1 + Wy

_ _Dﬂ(a 5 e’ 5 )

Dé(a2w1+w2'w1+w2) ’

2 2

Herein &3(a) gives a unit in k(2), the ray class field over k with conductor 20;. For
simplicity, we let 7= (w1 +w2)/2 and (@ + a + 1) 7 = u with some u € Q. Then,
using the formulas (K1) and (1.1), £3(«) can be further reformed as follows.

D%(Q/QT ;arT)

- Di’rim)

(e) =

Koo + o)1) K§(a1) K§(7)
K3 (a?1) K3 (at) Ki((a®+1)7)

= —¢(Eq(a?r, at) — Eq(a®7, 7))

Ko (=7 +u) K&(7)

= —€(EQ(0427'7 (o — 1)7)) /C?Z(Oﬂ-) ]C?z(—om' + u)
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4
— _¢(2E : (1)
e( olar T)) T or)
Hereby
_|_
2FEq(ar,7) = Eqf 4 5 wQ, w1 + wo)
= EQ(%, Wi +w2) or EQ(%, w1 +w2) (mod Z)
- (mod 2)
= — (mo )
2
and hence e( 2Eq(ar,7)) = —1. Then we have
R (o
(1.3) o) = 5 :
+w
Ké(a 1 : 2)

2. Characters ¢ and £q.

As in Section 1, let 2 be an oj-ideal and let {w;,ws} a fixed basis of € . Then,
using the formulas (1.2), (K2) and (K4), we have

I /e

xeK;Z](a)
x wy + wa
=e(=(Na —1) Eg(ws,w1)) 2
) w o
8 z€Ker(a) ICQ (Z’ + 71) }CQ (Z’ + 72)
x#£0
1
— e(g(NOz - 1) EQ(MQ,wl)) %
Wi + ws
siaw K00 Ko+ =) Kafo+2)

x#0

Ka(T22) Karia(5) Kaora(5)
w1 + we w1 w2
Ko (a Ko(—=-) Kol
=e(5(Na—1) Eg(ws,w1)) a ( R ) %”1) | %”2)
Ka( ) Kala=) Ka(a=)
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Hence
o) =a( [ fo)
zeKer(a)
z7#£0

Ka(PT2) Ka(ah) Ka(a22)

1 =1
:e(—(Na—l) EQ(wl,wQ)) w12—|—w2 w% wg ‘
Here we define eq by
(21) eala) = e(%(NOC — 1) Eq(wi,ws) ) [ [ ’fcf;((o;p))

w2 Wit W
2’ 2
w1+w2)

2
UJ1+WQ)

2

for v € J*(2), where p runs over the set { %, }. Then we have

K (

(2.2) a(a) = eq(a)

IC?z(oz

From the definition, it is easy to see that e&(a) = 1. Of course, the definition of
eq depends on the basis {wy,ws} of Q. Indeed, by a short calculation, we have the

following

Lemma 2-1. Any of three substitutions (w1, ws) — (wa,wr), (w1, w2) — (wa, —w1)

and (w1, ws) — (w1, w1 +we) do multiply eq(a) by the quantity

x40 N(a) = xu(Na) := (—1)%(1\’&—1)_

Remark. y, o N is a quadratic character of (0;/40;)*. In particular, in the case
where Nao = 1 (mod 4) for any o € J*(2), the definition of e does not depend on the

choice of basis {wy,wy} of .

In case (a) where (0;/204)* = {1}, since @« = 1 (mod 20) for any a € J*(2), we
have €3 (a) = & (a) = 1.

In case (b) where (0;/20%)™ is a group of order 2, we first choose a basis {wy, ws} of
2 so that wy/2 and ws/2 represent two distinct primitive 2-division points of 2. Then

for any o € J*(2), we have

w1 + Wwo w1 + Wo

5 =3 (mod )
and £3(a) = &4(«) by the formulas (2.2) and (K1). Especially in this case, if @ #
1 (mod 20;), then £3(a) = —1 (see Sec.1). Moreover, by Lemma 2-1, the same
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assertion holds without any restriction on the choice of basis of €.

In case (c) where (0x/20;)™ is a group of order 3, from the equations (1.3) and (2.2),
we see that e3(a) = 1 for any a € J*(2).

Consequently we see that in both cases (a) and (c) eq takes value in {£1}, and in the
remaining case (b) it takes value in { +1, &v/—1}. Moreover, we have the following

Proposition 2-2. For any o € J*(2), eq(a) is determined depending only on the
class of a modulo 4oy.
Proof. Let’s assume that a; = « (mod 4oy), i.e. a3 = a + 4u with some u € oy.

Then, on the one hand, since
Nay = Na+ 4Tr(au) + 16Nu,

we have
1

( g(NOél — 1) Eq(wy,ws) )

= 6( %(NOZ — I)EQ(wl,qu)) . e( %TT(&U) Eq(wy,ws) ),

where T'r means the trace map as usual. On the other hand, by the formula (K1)
HICQ aip) HICQ ap + 4up) = e( HICQ ap),

Wy w1 —|—w2
27

where p runs over the set { L; } and M is given by

MzQ(ZNp)-EQ(u,a).

Moreover a short calculation shows that

1
M = E(w_lwg + wiw3) Eq(u, ) (mod Z)

1
E(Ua + u@) Eq(wi,ws) (mod Z)

1
= ETT(H&) Eq(wy,ws) .

Hence we have eq(aq) = eq(a) .

Remark. In the same way as in the proof of Proposition 2-2, we can see that €3 ()

is determined depending only on the class of & modulo 20.
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Proposition 2-2 suggests an expectation that eq could be a character of (0y/40;)*.
However it is not true in general. Namely, in the next section, we shall prove the

following
Theorem 2-3. cq(af) = cq(a)VPeq(B) = ca(a)eq (BN for any o, B € J*(2).

Theorem 2-3 illustrates an action of Gal( k%*/H ) on eq(a), where H is the Hilbert
class field over k. Namely, we let o(3) := ((3), k%/H), the Artin automorphism
belonging to the principal ideal (3) = (Soj. Then,

(2.3) co(0)7?) = en(a)V0 = £2(25)

At any rate, as a consequence of Theorem 2-3, we see that in both cases (a) and (c)
£q defines a character on (0y/40;)* of order 2. Also in case (b), if Naw = 1 (mod 4)
for any a € J*(2), then eq defines a character on (0y/40;)* of order 4.

Now let —dj be the discriminant of k. Then we are in case (b) if and only if 4 | dy.
Moreover, if d, = 4dy with dy = 1 (mod 4), it always holds that Noa = 1 (mod 4) for
any « € J*(2). However in the case where dy = 4dy with dy = 2 (mod 4), we see that
Na = —1 (mod 4) for any a € J*(2) such that w # 1 (mod 20;). Hence in this case,

£q cannot be a character on (0;/40;)*. Indeed, by Theorem 2-3, we have

ea(af)
ea(a)ea(B)

for any o, 5 € J*(2) such that « # 1,  # 1 (mod 20;). In the case where dj, = 4d,
with dy = 2 (mod 4), in place of g, we consider éq defined by

= 59(0&)Nﬁ_1 = -1

Eala) = e( %(Na —1) ) ea(a).

Then £q also satisfies the cocycle property, i.e.
Ea(af) = éa(a)Veq(B) = Ea(a)éa(B)™™

for any a, 3 € J*(2). It is also true that the value £q(«) depends only on the class
of a modulo 40, and further é3(a) =1 for any @ € J*(2). Indeed, by Remark to
Proposition 2-2, €4 (a) = —1 if and only if @ # 1 (mod 20y) and equivalently Na # 1
(mod 4). Hence &g defines a character on (o0y/405)* of order 2. We will use this
modified character g in Section 4.
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3. Proof of Theorem 2-3.
Let all notations be the same as those in Section 2. For a complete proof of Theorem

2-3, it suffices to prove a half part of equalites, i.e.

ea(af) = eq(@)ea(B)™,

that is equivalent to the equality

N

w1+w2) w1+w2)

2
w1 +CU2)'

K38 " K (a
fa(af) = &a(a) &a(B)™ - o1 +2w2 -

KA | Ko

For this purpose we can apply the product formula of the Bayad function fq in

Theorem 1-2. For simplicity, we let 7 = (w; + wy)/2 again. Then on the one hand,

we have
D¢ (afz; afr)
D%(afz; 7)

folapz) =&olaB) [ folz+w)

zeKer(af)

=&alaB) ] falz+Faap),

7 mod afoy
T E o0p

where z,4 is a fixed primitive af-division point of C'/€2. On the other hand,

Di(afz; afr)  D§(aBz; afr) Di(a(Bz); aT)
DRadzir) ~ Dhapzian) U Gy

fa(apz)

_ D3(aBz; afT)
- Di(aBz; ar)

xéale) [ fa(Bz+riza),

r1 mod aoy
71 €0

where z, 1= fz,s and this gives a primitive a-division point of C/Q. Moreover, in
the above last equality,

H fa(Bz +riz,)

r1 mod «og
r1 € 0L

= ] fo(Bz+r12ap))

r1 mod aoy,
r1 €0

Di(Bz+rzy; T)
< 11 D3(Bz+ riza; BT)

D3(B(z + rizap) ; OT)
DE(B(z +112ap) 5 T)

r1 mod aoy,
r1 €0

Di(Bz+rixa; T)
= &a(B)N H - - H fa(z 4+ rzas +r22p)
r1 mod cog Dﬂ(ﬂz—’_ "M%a; ﬁ’i’) r1 mod cog
r1 €E0p ro mod oy

_10_
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D¢ o N
:fﬂ(ﬁ)Na H Dégz(ﬂiz%i:;i;ﬂ:')) X H fa(z+7Txap).

r1 mod aoy 7 mod afoy,

r1 €0

Herein x5 := avx44 and this gives a primitive S-division point of C' /€. Note that
{ri14+ary | r modaog, 7y mod oy } constitutes a complete system of representatives

of 0y /afog. Hence we obtain the following equality

€a(aB) = La(@)éa(B)™ x Fo(z;a,p)

where

Di(afBz; afT) Di(Bz +rimy; T)
Di(afz; ar) x Di(Bz+rza; BT)

FQ<Z;aaﬁ>:

r1 mod aog
1 €0k

Moreover, by the formula (D6), we have

_ DhaBziaBn) Dg(Bsim) KRNV K2
- Di(aPz;ar) D2 .,(Bz; Br) K2..o(Br) K3(r)Ne

X e(EQ( Z rZa , 2(1—6)7’))

r1 mod aoy

FQ(Zva7ﬁ)

_ KRB0 Khlar)
K3(afr)  Kg(r)e

N

) ]C?Z(ﬁW1—;—w2) « K%(awl—;WQ)
/C?Z(M;FMQ) Ké(aﬁwlng)v

and this proves Theorem 2-3.

4. Quadratic reciprocity law.

Let all notations be the same as those in the preceding sections. We fix a basis
{w1,ws} of an og-ideal 2. For any «, § in J*(2) such that (o, 3) = 1, we consider the
quadratic symbol (%)2 given by

¢),- I

QCGS/}

where Sz means a subset of Ker(/5) = Kerq() such that Ker(5) = {0, Sz, —Ss}, and
e(a, x) € {£1} is so determined that ax = e(a, x)y(z) with unique y(z) in Ssz. Note

_11_
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that this definition of (%)2 does not depend on the choice of Sg (cf. [9]).

a
In [6], we gave a revised version of Bayad’s reciprocity formula on (—)2 (Theorem

2-1in [6]). In this opportunity we further reformulte our formula in the following

form.

Theorem 4-1. For «, 5 € J*(2) such that (o, 5) =1,

o 3 Lo - 6Q(O[)%(Nﬁfl)
@) (B _ ) iWaenws-y _
(5)2(04)2 (=1) ) 69(5)%(]\[&_1)

Proof. Since fq is an odd function, fo(ax) = e(a, z)fo(y(x)) for any x € Sz. Then

<%)2: I (o H fQ ar)

z€Sp z€Sp

we have

Moreover, using the product formula in Theorem 1-2, we have

w1 + wo
o D?Z(ax; — 5 ) /
(5) "I | = ok @@ I fatera)
2 zeSy DQ(owc, 047) ' €Ker(a)
2 ' £0
=¢a(a) 7 AP IT T fale + o) falz — o),
z€Sg 2'€Sa
where )
D .
A9 =TT Dalazi7) — y _witws
Dg(ax; ar) 2

By the formula (D8), we have

(@ _ palar) — pa(T)
A = 10 )~ palor)

(original form in [6])
€S

_ pa(T) — pa(z) (pq is even and (2 ellitic)

palar) — pa(z)

ZGSB

DQTx T, —X
1 o(r: —1)

2e5, Dq(at;z) Do(aT; —x)

- 11 Da(r;2)
zeKer () DQ (O”—; CC)
x#0

_12_
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and then using the formulas (D4) and (D7) (with A = 371Q )

A Ko(ar)™® Ksa(r) _ {/cg(m)}w_ Ka(67)
A Ks-1a(ar) Ko(r)N? Ka(r) Kao(apfT)
B . Ka(ar) |V
fH(Oé,ﬁ,T) {’CQ(T)} :
Herein Ko(ar) Ka(57)
. L O\xT Q\PT
H(avﬁa T) T ’CQ(T)ICQ(OZ,@T)
Note that H(«,5; 7) = H([,«; 7). Moreover, since
IC2
éala) = zala) G
we have
S(a)* VP AL = H(a,8; 7)eala) 2 P,
and hence
(5) = Htass ) ea@) 0 TT T fale +2)nle o)
2

2€S5 1'€Sa
Symmetrically we have

(3), = ain)za@ oo T ] fale’ + 2)fale’ =)

o
2/€Se €Sy

= H(a, B;7)eq(f)z o) (—1)7Na-)(N5-1)

X H H fa(z + o) fo(z — o),

r€S3 2'€Sa

and hence

(E) <ﬁ) = (g> (ﬁ) = (_1)%(Na—1)(1vg,1) y M.
B 2 \¥ /5 5 2\ /5 89(5)%(1\’0&—1)
Thus we have furnished the proof of Theorem 4-1.

Remark. As is explained in Section 2, eq is a character on (0y/40;)* except for
the case where dy = 4dy and dy = 2 (mod 4). In the exceptional case, we may replace

£q in Theorem 4-1 by a character &g on (0 /40x)*, because

1 1(Ng—
L(Np-1) e(g(Na — 1)) z (N6=1) -59(04)%(]\75_1) L(NB-1)

EQ(a) _ _ Zo a) |
€Q<ﬁ)%(NOt*1) 6(%(1\[6 . 1))%(]\7&—1) . gﬂ(ﬁ)%(Nafl) gﬂ(ﬁ)%(l\’afl)

_13_
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In the case where di is odd, since e is a character of order 2, we have

+(NB-1)
gnlo)? 1 (NG— 1 (Na—
Q( ) _ 59(0{)2(NB 1) EQ(ﬂ)Z(N 1).

89(5)%(1\,&_1) -
In the case where dj, = 4dy with dy = 1 (mod 4), Nav = 1 (mod 4) for any a € J*(2),
and hence we have the same equality as above. In the remaining case where dy = 4d,
with dy = 2 (mod 4), since &g is a character of order 2, we have

5Q(a)%(NBfl)

L(NB-1) = L (Na-1)
— o =¢&a(a)? £a(B)? :
gﬂ(ﬂ) ?(Noz—l)

M

Here we bring to mind that Hajir and Villegas ([5]) which proved the following law

of quadratic reciprocity.
Theorem 4-2 ([5, Theorem 21]). For «, 3 € J*(2) such that (o, 3) =1,

(%) (g) = (1) TN gy () TNV () 7V,
2 2

In Theorem 4-2, k4 is a certain character of (0;/40;)* defined with use of the Galois
action on the quotients of n-values of Dedekind. For a precise explanation for k4, one
should refer to [5]. Especially Lemma 12 in [5] is useful for the computation of k4 («).

Compairing Theorem 4-1 with Theorem 4-2, there arises some interesting questions
as follows:

Q1. What could be the relation between x4 and eq (or £q) 7

Q2. Does the definition of e depend essentially on the og-ideal €2 ?

In the rest of this section, we attempt to make clear these questions. Hereafter we

let {w, 1} be the basis of 0, and let w be so normalized as follows:

14+ /=
%dk if di =3 (mod 4).
w =

vV —do lf dk = 4d0

We take oy, itself for 2, and we write 1 for ¢,, defined using the basis {w, 1}. Then,

from a numerical computation, we have the following
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Theorem 4-3. (i) In the case where dy, is odd, both of €1 and k4 are of order 2,
and €1 = K4.
(ii) In the case where dy, = 4dy with dy =1 (mod 4), both of €1 and k4 are of order 4,
and €1 = K3.
(iii) In the case where dy, = 4dy with dy = 2 (mod 4), both of €, and k4 are of order
2, and &, = k4. Herein &, means a character defined by & () = e(+(Naw —1))e1(e)
for a € J*(2).

Now let 2 and §2; be two oi-ideals which are similar to each other, i.e. Q; = uf)
with some p € k. We fix a basis {wy, w2} of Q and take {uws, pwo} for a basis of
Q1 = pf2. Then, from the definition (2.1) and the homogeneous property of Kq(z), we
see that

e, (@) = ea(a) = eqa) for any a € J*(2).

In each ideal class of k, there exists a prime ideal p of degree 1 such that

1 (mod 4) when dj, = 4d, with dy =1 (mod 4).
Np=p=
1 (mod 2) otherwise.

Namely, we know that

4 when dy = 4dy with dy =1 (mod 4),

( wy, 4 ) =
2 otherwise,

where wy means the number of roots of unity in the Hilbert class field ‘H over k. We
let {w+v, p} be a canonical basis of p. v is uniquely determined modulo p. Here we

may assume additionally that

0 (mod 8) when dj, = 3 (mod 4).

T
Il

1 (mod 8) when dp =0 (mod 4).

Then, by a numerical computation with use of the basis {w + v, p} of p, we can
confirm that e,(a) = e1(a) for any o € J*(2). Consequently, we can summarize our

arguments as follows:

Theorem 4-4. (i) When dy = 4dy with dy = 1 (mod 4), the definition of eq
depends neither on the choice of basis of Q nor on Q itself, and eq = &1 = k3.
(ii) When dy = odd or dy = 4dy with dy = 2 (mod 4), for any Q, €q is equal to one
of{e1,e1-xao N}
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