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Abstract

This paper is a sequel to our previous paper of the same title [6]. Using the
results in Bayad-Ayala [2], the original Bayad function is expressed with use
of the Klein function, and all our results in [6] can be rewritten in a renewed
version (Theorems 1-2 and 4-1). In particular, we are deeply concerned with
the quantities ξΩ(α) and A

(β)
α defined in [6] respectively with relation to the

product formula of Bayad function and the law of quadratic reciprocity in an
imaginary quadratic number field (Theorems 2-3 and 4-1). It is remarkable
that our renewed formula of quadratic reciprocity law has the quite similar form
to one of the formula of Hajir-Villegas [5], and this fact provides us another
interesting problem (Theorems 4-2, 4-3 and 4-4).

1. Terminologies and reformulation of a result on the Bayad function.

Let C, R and Z be respectively the field of complex and real numbers and the ring

of rational integers. By a C-lattice we mean a free Z-module of rank 2 which spans

C over R. For C-lattice Ω with Z-basis {ω1, ω2} such that Im(ω1/ω2) > 0,

a(Ω) :=
1

2 i

∣∣∣∣ ω1 ω2

ω1 ω2

∣∣∣∣ = |ω2|2 Im
( ω1

ω2

)

is a real positive number, which means the area of fundamental parallelogram of Ω

and depends only on Ω. Let EΩ be a R-bilinear form defined by

EΩ(u, v) :=
1

2 i a(Ω)
(uv − uv) for (u, v) ∈ C × C.

Then EΩ is integral valued on Ω×Ω and EΩ(ω1, ω2) = −1 for any basis {ω1, ω2} of Ω

such that Im(ω1/ω2) > 0.

Here we summarize briefly about the Klein function KΩ, the Jacobi form DΩ and

their fundamental properties, quoting mainly from Bayad-Ayala [ 2 ]. For the detail,

one should refer also to Kubert [ 7 ] and Kubert-Lang [ 8 ]. The Klein function KΩ

attached to a C-lattice Ω is defined by the infinite product

KΩ(z) = z e−
1
2
z η(z,Ω)

∏
ω∈Ω\{0}

(
1 − z

ω
) e

z
ω

+ 1
2

(
z
ω

)2
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 for any z ∈ C, where η(z, Ω) means the Weierstrass-Legendre eta function attached

to Ω. KΩ has the following fundamental properties:

(K1) For ρ ∈ Ω

KΩ(z + ρ) = χΩ(ρ) e( EΩ(ρ, z)/2 )KΩ(z),

where

χΩ(ρ) =

⎧⎨
⎩

1 if ρ ∈ 2Ω,

−1 if ρ ∈ Ω \ 2Ω,

and e(x) = e2πix for x ∈ R.

(K2) KΩ(z) is homogeneous of degree 1, that is

KλΩ(λz) = λKΩ(z) for λ ∈ C× := C \ {0}.

In particular, KΩ(−z) = −KΩ(z).

(K3) KΩ(z) admits principal part z when z tends to 0, that is

lim
z→0

KΩ(z)

z
= 1.

Let Ω and Λ be two C-lattices such that Ω ⊂ Λ, and R be any complete system of

representatives of Λ/Ω. Then the following product formula holds:

(K4) KΛ(z) = e
(
EΩ( z ,

∑
x∈R
x/∈Ω

x )/2
)KΩ(z)

∏
x∈R
x/∈Ω

KΩ(z + x)

KΩ(x)
.

The Jacobi form DΩ associated with KΩ is defined by

(1.1) DΩ(z ; ϕ) = e
(
EΩ(z , ϕ)/2

) KΩ(z + ϕ)

KΩ(z)KΩ(ϕ)
for z, ϕ ∈ C \ Ω.

DΩ(z ; ϕ) satisfies the following fundamental properties:

(D1) DΩ(z ; ϕ + ρ) = DΩ(z ; ϕ) for any ρ ∈ Ω.

(D2) DΩ(z + ρ ; ϕ) = e
(
EΩ(ρ, ϕ)

)
DΩ(z ; ϕ) for any ρ ∈ Ω .

(D3) DΩ(z ; ϕ) = e
(
EΩ(z , ϕ)

)
DΩ(ϕ ; z).

(D4) DΩ(z ; ϕ) is homogeneous of degree -1, that is

DλΩ(λz ; λϕ) = λ−1DΩ(z ; ϕ) for λ ∈ C×.

(D5) DΩ(z ϕ) admits principal part 1
z

when z tends to 0, that is

lim
z→0

z · DΩ(z ; ϕ) = 1.
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 Let Ω, Λ and R be the same as before. Then the main theorem in [ 2 ] asserts the

following product formulas:

(D6) For any z and ϕ ∈ C \ Λ,

DΛ(z ; ϕ) =
KΩ(ϕ)[Λ : Ω]

KΛ(ϕ)

∏
x∈R

DΩ(z + x ; ϕ)e
(−EΩ(x , ϕ)

)
.

(D7) For any z ∈ C \ Λ,

∏
x∈R,x/∈Ω

DΩ(z ; x)−1 =
KΩ(z)[Λ : Ω]

KΛ(z)
.

With relation to the Weierstrass ℘-function, the following formulas hold:

(D8) For any z, ϕ ∈ C \ Ω, ℘Ω(z) − ℘Ω(ϕ) = DΩ(z ; ϕ)DΩ(z ; −ϕ).

(D9) For any z ∈ C \ Ω, ℘′
Ω(z) = −2

∏
ϕ

DΩ(z ; ϕ), where ϕ runs over the set of

representatives of 1
2
Ω/Ω such that ϕ /∈ Ω.

The Bayad function fΩ attached to a C-lattice Ω with basis {ω1, ω2} is originally

defined by

fΩ(z) = C
℘Ω(z) − ℘Ω

(ω1 + ω2

2

)
℘′

Ω(z)

with the constant C such that

C2 =
2℘′′

Ω

(ω2

2

)

℘Ω

(ω2

2

) − ℘Ω

(ω1 + ω2

2

)

(see [ 1 ] and [ 6 ]). Of course this definition of fΩ depends on the choice of the basis

{ω1, ω2} of Ω. By the formulas (D8) and (D9), fΩ(z) can be reformed as follow:

fΩ(z) = −C

2

DΩ

(
z ;

ω1 + ω2

2

)
DΩ

(
z ;

ω1

2

)
DΩ

(
z ;

ω3

2

)

= −C

2

KΩ

( ω1

2

)KΩ

( ω2

2

)

KΩ

( ω1 + ω2

2

) ×
KΩ

(
z +

ω1 + ω2

2

)KΩ(z)

KΩ

(
z +

ω1

2

)KΩ

(
z +

ω2

2

)

:= C1

KΩ

(
z +

ω1 + ω2

2

)KΩ(z)

KΩ

(
z +

ω1

2

)KΩ

(
z +

ω2

2

) .
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 A simple calculation (using (D8) and (D9) ) shows that C1 = ±e
(

1
8
EΩ(ω2 , ω1)

)
.

Hence we may adopt

(1.2) fΩ(z) = e
( 1

8
EΩ(ω2 , ω1)

) KΩ

(
z +

ω1 + ω2

2

)KΩ(z)

KΩ

(
z +

ω1

2

)KΩ

(
z +

ω2

2

) ,

as the definition of Bayad function. Of course this definition also depends on the

choice of basis {ω1, ω2} of Ω. fΩ is an Ω-elliptic function and its divisor on C/Ω is

( fΩ ) = (
ω1 + ω2

2
) + ( 0 ) − (

ω1

2
) − (

ω2

2
).

The following lemma is immediate from the definition (1.1) and the formula (K1).

Lemma 1-1( [ 6 , Lemma 1-1] ). Under the above notations, we have

(1) fΩ(z) · fΩ(z +
ω1

2
) = 1, (2) fΩ(z) · fΩ(z +

ω2

2
) = −1.

Hereafter let k be an imaginary quadratic number field and ok be the ring of integers

in k. We mean by J∗(2) the set { α ∈ ok | (α , 2ok) = 1 }. For a fixed ok-ideal Ω and

an element α in ok, we define

Ker(α) = KerΩ(α) := { x ∈ C/Ω | αx = 0 } .

We call the elements in Ker(α) α-division points of C/Ω. In particular, x ∈ Ker(α)

is called a primitive α-division point of C/Ω if α1x �= 0 for any α1 ∈ ok such that

α1 /∈ αok. Plainly, Ker(α) = α−1Ω/Ω and this is a finite group of order Nα, where Nα

means the absolute norm of α. Moreover, if xα ∈ Ker(α) is a fixed primitive α-division

point, then the map

ok → C/Ω by r �→ rxα

induces an isomorphism of ok-module from ok/αok onto Ker(α), and Ker(α) may be

written as { rxα | r mod αok, r ∈ ok }. Sometimes, for convenience sake, we use the

notation Ker(α), identifing it with a complete set of representatives of α−1Ω/Ω.

Using the formula (D8), we can restate our product formula for fΩ (Theorem 1-3

in [ 6 ] ) as follows.

Theorem 1-2 (Revised product formula). For any α in J∗(2),

fΩ(αz)
D2

Ω

(
αz ; α

ω1 + ω2

2

)

D2
Ω

(
αz ;

ω1 + ω2

2

) = ξΩ(α)
∏

x∈Ker(α)

fΩ(z + x),
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 where ξΩ(α) is given by

ξΩ(α) = α
∏

x∈Ker(α)
x�=0

(
fΩ(x)

)−1
= α

∏
x∈Ker(α)

x�=0

fΩ( x +
ω1

2
).

Here we remark that if α ≡ 1 (mod 2ok), DΩ-factor in Theorem 1-2 can be deleted

and we have ξ2
Ω(α) = 1 as in Bayad [ 1 ]. In the rest of this section, we consider the

value ξΩ(α) more precisely, reviewing our arguments in Sec. 1 of [ 6 ].

Now the multiplicative group (ok/2ok)
× has 3 possibilities:

(a) (ok/2ok)
× ∼= {1}, when 2 splits in k.

(b) (ok/2ok)
× is a cyclic group of order 2, when 2 ramifies in k.

(c) (ok/2ok)
× is a cyclic group of order 3, when 2 remains prime in k.

In case (a), since α ≡ 1 (mod 2ok) for any α ∈ J∗(2), ξ2
Ω(α) = 1 as in [ 1 ].

In case (b), by a suitable choice of basis {ω1, ω2} of Ω, we may assume that ω1/2

and ω2/2 represent two distinct primitive 2-division points of Ω and (ω1 +ω2)/2 other

non-zero 2-division point. Under this assumption, we showed that ξ2
Ω(α) = −1 for

any α ∈ J∗(2) such that α �≡ 1 (mod 2ok).

In case (c), we showed that for any α ∈ J∗(2) such that α �≡ 1 (mod 2ok)

(α2 + α + 1)
ω1 + ω2

2
≡ 0 (mod Ω)

and

ξ2
Ω(α) = −

℘Ω

(
α2ω1 + ω2

2

) − ℘Ω

(
α

ω1 + ω2

2

)
℘Ω

(
α2ω1 + ω2

2

) − ℘Ω

( ω1 + ω2

2

) .

= −
D2

Ω

(
α2ω1 + ω2

2
; α

ω1 + ω2

2

)
D2

Ω

(
α2ω1 + ω2

2
;

ω1 + ω2

2

) .

Herein ξ2
Ω(α) gives a unit in k(2), the ray class field over k with conductor 2ok. For

simplicity, we let τ = (ω1 + ω2)/2 and (α2 + α + 1) τ = u with some u ∈ Ω. Then,

using the formulas (K1) and (1.1), ξ2
Ω(α) can be further reformed as follows.

ξ2
Ω(α) = −D2

Ω(α2τ ; ατ)

D2
Ω(α2τ ; τ)

= −e
(
EΩ(α2τ, ατ) − EΩ(α2τ, τ)

) K2
Ω((α2 + α)τ)

K2
Ω(α2τ)K2

Ω(ατ)

K2
Ω(α2τ)K2

Ω(τ)

K2
Ω((α2 + 1)τ)

= −e
(
EΩ(α2τ, (α − 1)τ)

) K2
Ω(−τ + u)K2

Ω(τ)

K2
Ω(ατ)K2

Ω(−ατ + u)
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= −e

(
2 EΩ(ατ, τ)

) K4
Ω(τ)

K4
Ω(ατ)

.

Hereby

2 EΩ(ατ, τ) = EΩ(α
ω1 + ω2

2
, ω1 + ω2)

≡ EΩ

( ω1

2
, ω1 + ω2

)
or EΩ

( ω2

2
, ω1 + ω2

)
(mod Z)

≡ 1

2
(mod Z).

and hence e
(
2EΩ(ατ, τ)

)
= −1. Then we have

(1.3) ξ2
Ω(α) =

K4
Ω

(ω1 + ω2

2

)

K4
Ω

(
α

ω1 + ω2

2

) .

2. Characters εΩ and ε̃Ω.

As in Section 1, let Ω be an ok-ideal and let {ω1, ω2} a fixed basis of Ω . Then,

using the formulas (1.2), (K2) and (K4), we have

∏
x∈Ker(α)

x�=0

fΩ(x)

= e
( 1

8
(Nα − 1) EΩ(ω2, ω1)

) ∏
x∈Ker(α)

x�=0

KΩ(x)KΩ

(
x +

ω1 + ω2

2

)
KΩ

(
x +

ω1

2

)KΩ

(
x +

ω2

2

)

= e
( 1

8
(Nα − 1) EΩ(ω2, ω1)

) ×
∏

x∈Ker(α)
x�=0

KΩ

(
x +

ω1 + ω2

2

)
KΩ(x)

KΩ(x)

KΩ

(
x +

ω1

2

) KΩ(x)

KΩ

(
x +

ω2

2

)

= e
( 1

8
(Nα − 1) EΩ(ω2, ω1)

) Kα−1Ω

(ω1 + ω2

2

)
KΩ

(ω1 + ω2

2

)
KΩ

( ω1

2

)
Kα−1Ω

( ω1

2

) KΩ

( ω2

2

)
Kα−1Ω

( ω2

2

)

= e
( 1

8
(Nα − 1) EΩ(ω2, ω1)

)
α

KΩ

(
α

ω1 + ω2

2

)
KΩ

(ω1 + ω2

2

)
KΩ

( ω1

2

)
KΩ

(
α

ω1

2

) KΩ

( ω2

2

)
KΩ

(
α

ω2

2

) .
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 Hence

ξΩ(α) = α
( ∏

x∈Ker(α)
x�=0

fΩ(x)
)−1

= e
( 1

8
(Nα − 1) EΩ(ω1, ω2)

) KΩ

(ω1 + ω2

2

)
KΩ

(
α

ω1 + ω2

2

)
KΩ

(
α

ω1

2

)
KΩ

( ω1

2

) KΩ

(
α

ω2

2

)
KΩ

( ω2

2

) .

Here we define εΩ by

(2.1) εΩ(α) := e
( 1

8
(Nα − 1) EΩ(ω1, ω2)

)∏
ρ

KΩ(αρ)

KΩ(ρ)

for α ∈ J∗(2), where ρ runs over the set { ω1

2
,

ω2

2
,

ω1 + ω2

2
}. Then we have

(2.2) ξΩ(α) = εΩ(α)
K2

Ω

( ω1 + ω2

2

)

K2
Ω

(
α

ω1 + ω2

2

) .

From the definition, it is easy to see that ε4
Ω(α) = 1. Of course, the definition of

εΩ depends on the basis {ω1, ω2} of Ω. Indeed, by a short calculation, we have the

following

Lemma 2-1. Any of three substitutions (ω1, ω2) → (ω2, ω1), (ω1, ω2) → (ω2,−ω1)

and (ω1, ω2) → (ω1, ω1 + ω2) do multiply εΩ(α) by the quantity

χ4 ◦ N(α) = χ4(Nα) := (−1)
1
2

(Nα−1).

Remark. χ4 ◦ N is a quadratic character of (ok/4ok)
×. In particular, in the case

where Nα ≡ 1 (mod 4) for any α ∈ J∗(2), the definition of εΩ does not depend on the

choice of basis {ω1, ω2} of Ω.

In case (a) where (ok/2ok)
× ∼= {1}, since α ≡ 1 (mod 2O) for any α ∈ J∗(2), we

have ε2
Ω(α) = ξ2

Ω(α) = 1.

In case (b) where (ok/2ok)
× is a group of order 2, we first choose a basis {ω1, ω2} of

Ω so that ω1/2 and ω2/2 represent two distinct primitive 2-division points of Ω. Then

for any α ∈ J∗(2), we have

α
ω1 + ω2

2
≡ ω1 + ω2

2
(mod Ω)

and ε2
Ω(α) = ξ2

Ω(α) by the formulas (2.2) and (K1). Especially in this case, if α �≡
1 (mod 2ok), then ε2

Ω(α) = −1 (see Sec.1). Moreover, by Lemma 2-1, the same
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 assertion holds without any restriction on the choice of basis of Ω.

In case (c) where (ok/2ok)
× is a group of order 3, from the equations (1.3) and (2.2),

we see that ε2
Ω(α) = 1 for any α ∈ J∗(2).

Consequently we see that in both cases (a) and (c) εΩ takes value in {±1}, and in the

remaining case (b) it takes value in {±1,±√−1 }. Moreover, we have the following

Proposition 2-2. For any α ∈ J∗(2), εΩ(α) is determined depending only on the

class of α modulo 4ok.

Proof. Let’s assume that α1 ≡ α (mod 4ok), i.e. α1 = α + 4u with some u ∈ ok.

Then, on the one hand, since

Nα1 = Nα + 4Tr(αu) + 16Nu ,

we have

e
( 1

8
(Nα1 − 1)EΩ(ω1, ω2)

)

= e
( 1

8
(Nα − 1)EΩ(ω1, ω2)

) · e( 1

2
Tr(αu) EΩ(ω1, ω2)

)
,

where Tr means the trace map as usual. On the other hand, by the formula (K1)

∏
ρ

KΩ(α1ρ) =
∏

ρ

KΩ(αρ + 4uρ) = e(M)
∏

ρ

KΩ(αρ) ,

where ρ runs over the set { ω1

2
,

ω2

2
,
ω1 + ω2

2
} and M is given by

M = 2
(∑

ρ

Nρ
) · EΩ(u, α).

Moreover a short calculation shows that

M ≡ 1

2
(ω1ω2 + ω1ω2) EΩ(u, α) (mod Z)

≡ 1

2
(uα + uα) EΩ(ω1, ω2) (mod Z)

=
1

2
Tr(uα) EΩ(ω1, ω2) .

Hence we have εΩ(α1) = εΩ(α) .

Remark. In the same way as in the proof of Proposition 2-2, we can see that ε2
Ω(α)

is determined depending only on the class of α modulo 2ok.
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 Proposition 2-2 suggests an expectation that εΩ could be a character of (ok/4ok)
×.

However it is not true in general. Namely, in the next section, we shall prove the

following

Theorem 2-3. εΩ(αβ) = εΩ(α)NβεΩ(β) = εΩ(α)εΩ(β)Nα for any α , β ∈ J∗(2).

Theorem 2-3 illustrates an action of Gal( kab/H ) on εΩ(α), where H is the Hilbert

class field over k. Namely, we let σ(β) := ( (β) , kab/H ), the Artin automorphism

belonging to the principal ideal (β) = βok. Then,

(2.3) εΩ(α)σ(β) = εΩ(α)Nβ =
εΩ(αβ)

εΩ(β)
.

At any rate, as a consequence of Theorem 2-3, we see that in both cases (a) and (c)

εΩ defines a character on (ok/4ok)
× of order 2. Also in case (b), if Nα ≡ 1 (mod 4)

for any α ∈ J∗(2), then εΩ defines a character on (ok/4ok)
× of order 4.

Now let −dk be the discriminant of k. Then we are in case (b) if and only if 4 | dk.

Moreover, if dk = 4d0 with d0 ≡ 1 (mod 4), it always holds that Nα ≡ 1 (mod 4) for

any α ∈ J∗(2). However in the case where dk = 4d0 with d0 ≡ 2 (mod 4), we see that

Nα ≡ −1 (mod 4) for any α ∈ J∗(2) such that α �≡ 1 (mod 2ok). Hence in this case,

εΩ cannot be a character on (ok/4ok)
×. Indeed, by Theorem 2-3, we have

εΩ(αβ)

εΩ(α)εΩ(β)
= εΩ(α)Nβ−1 = −1

for any α , β ∈ J∗(2) such that α �≡ 1 , β �≡ 1 (mod 2ok). In the case where dk = 4d0

with d0 ≡ 2 (mod 4), in place of εΩ, we consider ε̃Ω defined by

ε̃Ω(α) := e
( 1

8
(Nα − 1)

)
εΩ(α).

Then ε̃Ω also satisfies the cocycle property, i.e.

ε̃Ω(αβ) = ε̃Ω(α)Nβ ε̃Ω(β) = ε̃Ω(α)ε̃Ω(β)Nα

for any α, β ∈ J∗(2). It is also true that the value ε̃Ω(α) depends only on the class

of α modulo 4ok and further ε̃2
Ω(α) = 1 for any α ∈ J∗(2). Indeed, by Remark to

Proposition 2-2, ε2
Ω(α) = −1 if and only if α �≡ 1 (mod 2ok) and equivalently Nα �≡ 1

(mod 4). Hence ε̃Ω defines a character on (ok/4ok)
× of order 2. We will use this

modified character ε̃Ω in Section 4.
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 3. Proof of Theorem 2-3.

Let all notations be the same as those in Section 2. For a complete proof of Theorem

2-3, it suffices to prove a half part of equalites, i.e.

εΩ(αβ) = εΩ(α)εΩ(β)Nα,

that is equivalent to the equality

ξΩ(αβ) = ξΩ(α) ξΩ(β)Nα

⎛
⎜⎝K2

Ω

(
β

ω1 + ω2

2

)

K2
Ω

(ω1 + ω2

2

)
⎞
⎟⎠

Nα

K2
Ω

(
α

ω1 + ω2

2

)

K2
Ω

(
αβ

ω1 + ω2

2

) .

For this purpose we can apply the product formula of the Bayad function fΩ in

Theorem 1-2. For simplicity, we let τ = (ω1 + ω2)/2 again. Then on the one hand,

we have

fΩ(αβz)
D2

Ω(αβz ; αβτ)

D2
Ω(αβz ; τ)

= ξΩ(αβ)
∏

x∈Ker(αβ)

fΩ(z + x)

= ξΩ(αβ)
∏

r̃ mod αβ k
r̃∈ k

fΩ(z + r̃ xαβ),

where xαβ is a fixed primitive αβ-division point of C/Ω. On the other hand,

fΩ(αβz)
D2

Ω(αβz ; αβτ)

D2
Ω(αβz ; τ)

=
D2

Ω(αβz ; αβτ)

D2
Ω(αβz ; ατ)

× fΩ( α(βz) )
D2

Ω( α(βz) ; ατ)

D2
Ω( α(βz) ; τ)

=
D2

Ω(αβz ; αβτ)

D2
Ω(αβz ; ατ)

× ξΩ(α)
∏

r1 mod α k
r1 ∈ k

fΩ(βz + r1 xα),

where xα := β xαβ and this gives a primitive α-division point of C/Ω. Moreover, in

the above last equality,

∏
r1 mod α k

r1 ∈ k

fΩ(βz + r1 xα)

=
∏

r1 mod α k
r1 ∈ k

fΩ( β(z + r1 xαβ) )
D2

Ω( β(z + r1xαβ) ; βτ)

D2
Ω( β(z + r1xαβ) ; τ )

×
∏

r1 mod α k
r1 ∈ k

D2
Ω( βz + r1xα ; τ)

D2
Ω( βz + r1xα ; βτ )

= ξΩ(β)Nα
∏

r1 mod α k
r1 ∈ k

D2
Ω( βz + r1xα ; τ)

D2
Ω( βz + r1xα ; βτ )

×
∏

r1 mod α k
r2 mod β k

fΩ( z + r1xαβ + r2xβ )
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= ξΩ(β)Nα

∏
r1 mod α k

r1 ∈ k

D2
Ω( βz + r1xα ; τ)

D2
Ω( βz + r1xα ; βτ )

×
∏

r̃ mod αβ k

fΩ( z + r̃xαβ ).

Herein xβ := α xαβ and this gives a primitive β-division point of C/Ω. Note that

{ r1 +αr2 | r1 modαok, r2 modβok } constitutes a complete system of representatives

of ok/αβok. Hence we obtain the following equality

ξΩ(αβ) = ξΩ(α)ξΩ(β)Nα × FΩ( z ; α, β )

where

FΩ( z ; α, β ) =
D2

Ω(αβz ; αβτ)

D2
Ω(αβz ; ατ)

×
∏

r1 mod α k
r1 ∈ k

D2
Ω( βz + r1xα ; τ)

D2
Ω( βz + r1xα ; βτ )

.

Moreover, by the formula (D6), we have

FΩ( z ; α, β ) =
D2

Ω(αβz ; αβτ)

D2
Ω(αβz ; ατ)

· D2
α−1Ω( βz ; τ)

D2
α−1Ω( βz ; βτ)

· K
2
Ω(βτ)Nα

K2
α−1Ω(βτ)

· K
2
α−1Ω(τ)

K2
Ω(τ)Nα

× e
(
EΩ

( ∑
r1 mod α k

r1xα , 2(1 − β)τ )
)

=
K2

Ω(βτ)Nα

K2
Ω(αβτ)

· K2
Ω(ατ)

K2
Ω(τ)Nα

=

⎛
⎜⎝K2

Ω

(
β

ω1 + ω2

2

)

K2
Ω

( ω1 + ω2

2

)
⎞
⎟⎠

Nα

K2
Ω

(
α

ω1 + ω2

2

)

K2
Ω

(
αβ

ω1 + ω2

2

) ,

and this proves Theorem 2-3.

4. Quadratic reciprocity law.

Let all notations be the same as those in the preceding sections. We fix a basis

{ω1, ω2} of an ok-ideal Ω. For any α, β in J∗(2) such that (α, β) = 1, we consider the

quadratic symbol
( α

β

)
2

given by

(
α

β

)
2

=
∏
x∈Sβ

ε(α, x),

where Sβ means a subset of Ker(β) = KerΩ(β) such that Ker(β) = {0, Sβ ,−Sβ}, and

ε(α, x) ∈ {±1} is so determined that αx = ε(α, x)γ(x) with unique γ(x) in Sβ. Note
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 that this definition of
( α

β

)
2

does not depend on the choice of Sβ (cf. [ 9 ]).

In [ 6 ], we gave a revised version of Bayad’s reciprocity formula on
( α

β

)
2

(Theorem

2-1 in [ 6 ] ). In this opportunity we further reformulte our formula in the following

form.

Theorem 4-1. For α, β ∈ J∗(2) such that (α, β) = 1,

(
α

β

)
2

(
β

α

)
2

= (−1)
1
4

(Nα−1)(Nβ−1) × εΩ(α)
1
2

(Nβ−1)

εΩ(β)
1
2

(Nα−1)
.

Proof. Since fΩ is an odd function, fΩ(αx) = ε(α, x)fΩ(γ(x)) for any x ∈ Sβ. Then

we have (
α

β

)
2

=
∏
x∈Sβ

ε(α, x) =
∏
x∈Sβ

fΩ(αx)

fΩ(γ(x))
=

∏
x∈Sβ

fΩ(αx)

fΩ(x)
.

Moreover, using the product formula in Theorem 1-2, we have

(
α

β

)
2

=
∏
x∈Sβ

⎛
⎜⎜⎝

D2
Ω

(
αx ;

ω1 + ω2

2

)

D2
Ω

(
αx ; α

ω1 + ω2

2

) ξΩ(α)
∏

x′∈Ker(α)
x′ �=0

fΩ(x + x′)

⎞
⎟⎟⎠

= ξΩ(α)
Nβ−1

2 A
(α)
β

∏
x∈Sβ

∏
x′∈Sα

fΩ(x + x′)fΩ(x − x′),

where

A
(α)
β =

∏
x∈Sβ

D2
Ω( αx ; τ )

D2
Ω( αx ; ατ )

with τ =
ω1 + ω2

2
.

By the formula (D8), we have

A
(α)
β =

∏
x∈Sβ

℘Ω(αx) − ℘Ω(τ)

℘Ω(αx) − ℘Ω(ατ)
( original form in [ 6 ] )

=
∏
x∈Sβ

℘Ω(τ) − ℘Ω(x)

℘Ω(ατ) − ℘Ω(x)
( ℘Ω is even and Ω ellitic )

=
∏
x∈Sβ

DΩ(τ ; x) DΩ(τ ;−x)

DΩ(ατ ; x) DΩ(ατ ;−x)

=
∏

x∈Ker(β)
x�=0

DΩ(τ ; x)

DΩ(ατ ; x)
,
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 and then using the formulas (D4) and (D7) (with Λ = β−1Ω )

A
(α)
β =

KΩ(ατ)Nβ

Kβ−1Ω(ατ)
· Kβ−1Ω(τ)

KΩ(τ)Nβ
=

{KΩ(ατ)

KΩ(τ)

}Nβ

· KΩ(βτ)

KΩ(αβτ)

= H( α, β ; τ )

{KΩ(ατ)

KΩ(τ)

}Nβ−1

.

Herein

H( α, β ; τ ) :=
KΩ(ατ)KΩ(βτ)

KΩ(τ)KΩ(αβτ)
.

Note that H( α, β ; τ ) = H( β, α ; τ ). Moreover, since

ξΩ(α) = εΩ(α)
K2

Ω(τ)

K2
Ω(ατ)

,

we have

ξΩ(α)
1
2

(Nβ−1) A
(α)
β = H( α, β ; τ ) εΩ(α)

1
2

(Nβ−1),

and hence(
α

β

)
2

= H( α, β ; τ ) εΩ(α)
1
2

(Nβ−1) ×
∏
x∈Sβ

∏
x′∈Sα

fΩ(x + x′)fΩ(x − x′).

Symmetrically we have(
β

α

)
2

= H( β , α ; τ ) εΩ(β)
1
2

(Nα−1)
∏

x′∈Sα

∏
x∈Sβ

fΩ(x′ + x)fΩ(x′ − x)

= H( α , β ; τ ) εΩ(β)
1
2

(Nα−1) (−1)
1
4

(Nα−1)(Nβ−1)

×
∏
x∈Sβ

∏
x′∈Sα

fΩ(x + x′)fΩ(x − x′),

and hence(
α

β

)
2

(
β

α

)
2

=

(
α

β

)
2

(
β

α

)−1

2

= (−1)
1
4

(Nα−1)(Nβ−1) × εΩ(α)
1
2

(Nβ−1)

εΩ(β)
1
2

(Nα−1)
.

Thus we have furnished the proof of Theorem 4-1.

Remark. As is explained in Section 2, εΩ is a character on (ok/4ok)
× except for

the case where dk = 4d0 and d0 ≡ 2 (mod 4). In the exceptional case, we may replace

εΩ in Theorem 4-1 by a character ε̃Ω on (ok/4ok)
×, because

εΩ(α)
1
2

(Nβ−1)

εΩ(β)
1
2

(Nα−1)
=

e
( 1

8
(Nα − 1)

) 1
2

(Nβ−1) · εΩ(α)
1
2

(Nβ−1)

e
( 1

8
(Nβ − 1)

) 1
2

(Nα−1) · εΩ(β)
1
2

(Nα−1)
=

ε̃Ω(α)
1
2

(Nβ−1)

ε̃Ω(β)
1
2

(Nα−1)
.
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In the case where dk is odd, since εΩ is a character of order 2, we have

εΩ(α)
1
2

(Nβ−1)

εΩ(β)
1
2

(Nα−1)
= εΩ(α)

1
2

(Nβ−1) εΩ(β)
1
2

(Nα−1).

In the case where dk = 4d0 with d0 ≡ 1 (mod 4), Nα ≡ 1 (mod 4) for any α ∈ J∗(2),

and hence we have the same equality as above. In the remaining case where dk = 4d0

with d0 ≡ 2 (mod 4), since ε̃Ω is a character of order 2, we have

ε̃Ω(α)
1
2

(Nβ−1)

ε̃Ω(β)
1
2

(Nα−1)
= ε̃Ω(α)

1
2

(Nβ−1) ε̃Ω(β)
1
2

(Nα−1).

Here we bring to mind that Hajir and Villegas ([ 5 ]) which proved the following law

of quadratic reciprocity.

Theorem 4-2 ([ 5 , Theorem 21 ]). For α, β ∈ J∗(2) such that (α, β) = 1,

(
α

β

)
2

(
β

α

)
2

= (−1)
1
4

(Nα−1)(Nβ−1) κ4(α)
1
2

(Nβ−1)κ4(β)
1
2

(Nα−1).

In Theorem 4-2, κ4 is a certain character of (ok/4ok)
× defined with use of the Galois

action on the quotients of η-values of Dedekind. For a precise explanation for κ4, one

should refer to [ 5 ]. Especially Lemma 12 in [ 5 ] is useful for the computation of κ4(α).

Compairing Theorem 4-1 with Theorem 4-2, there arises some interesting questions

as follows:

Q1. What could be the relation between κ4 and εΩ (or ε̃Ω) ?

Q2. Does the definition of εΩ depend essentially on the ok-ideal Ω ?

In the rest of this section, we attempt to make clear these questions. Hereafter we

let {ω , 1 } be the basis of ok and let ω be so normalized as follows:

ω =

⎧⎪⎪⎨
⎪⎪⎩

−1 +
√−dk

2
if dk ≡ 3 (mod 4).

√−d0 if dk = 4d0.

We take ok itself for Ω, and we write ε1 for ε
k

defined using the basis {ω , 1 }. Then,

from a numerical computation, we have the following
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 Theorem 4-3. (i) In the case where dk is odd, both of ε1 and κ4 are of order 2,

and ε1 = κ4.

(ii) In the case where dk = 4d0 with d0 ≡ 1 (mod 4), both of ε1 and κ4 are of order 4,

and ε1 = κ3
4.

(iii) In the case where dk = 4d0 with d0 ≡ 2 (mod 4), both of ε̃1 and κ4 are of order

2, and ε̃1 = κ4. Herein ε̃1 means a character defined by ε̃1(α) = e
(

1
8
(Nα − 1)

)
ε1(α)

for α ∈ J∗(2).

Now let Ω and Ω1 be two ok-ideals which are similar to each other, i.e. Ω1 = μΩ

with some μ ∈ k. We fix a basis {ω1, ω2} of Ω and take {μω1, μω2} for a basis of

Ω1 = μΩ. Then, from the definition (2.1) and the homogeneous property of KΩ(z), we

see that

εΩ1(α) = εμΩ(α) = εΩ(α) for any α ∈ J∗(2).

In each ideal class of k, there exists a prime ideal p of degree 1 such that

Np = p ≡
⎧⎨
⎩

1 (mod 4) when dk = 4d0 with d0 ≡ 1 (mod 4).

1 (mod 2) otherwise.

Namely, we know that

( wH, 4 ) =

⎧⎨
⎩

4 when dk = 4d0 with d0 ≡ 1 (mod 4),

2 otherwise,

where wH means the number of roots of unity in the Hilbert class field H over k. We

let {ω + ν , p } be a canonical basis of p. ν is uniquely determined modulo p. Here we

may assume additionally that

ν ≡
⎧⎨
⎩

0 (mod 8) when dk ≡ 3 (mod 4).

1 (mod 8) when dk ≡ 0 (mod 4).

Then, by a numerical computation with use of the basis {ω + ν , p } of p, we can

confirm that ε (α) = ε1(α) for any α ∈ J∗(2). Consequently, we can summarize our

arguments as follows:

Theorem 4-4. (i) When dk = 4d0 with d0 ≡ 1 (mod 4), the definition of εΩ

depends neither on the choice of basis of Ω nor on Ω itself, and εΩ = ε1 = κ3
4.

(ii) When dk = odd or dk = 4d0 with d0 ≡ 2 (mod 4), for any Ω, εΩ is equal to one

of { ε1 , ε1 · χ4 ◦ N }
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